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Natural history and evolutionary principles
of gene duplication in fungi
Ilan Wapinski1,2,3, Avi Pfeffer3, Nir Friedman4 & Aviv Regev1,5

Gene duplication and loss is a powerful source of functional innovation. However, the general principles that govern this
process are still largely unknown. With the growing number of sequenced genomes, it is now possible to examine these
events in a comprehensive and unbiased manner. Here, we develop a procedure that resolves the evolutionary history of all
genes in a large group of species. We apply our procedure to seventeen fungal genomes to create a genome-wide catalogue
of gene trees that determine precise orthology and paralogy relations across these species. We show that gene duplication
and loss is highly constrained by the functional properties and interacting partners of genes. In particular, stress-related
genes exhibit many duplications and losses, whereas growth-related genes show selection against such changes.
Whole-genome duplication circumvents this constraint and relaxes the dichotomy, resulting in an expanded functional scope
of gene duplication. By characterizing the functional fate of duplicate genes we show that duplicated genes rarely diverge
with respect to biochemical function, but typically diverge with respect to regulatory control. Surprisingly, paralogous
modules of genes rarely arise, even after whole-genome duplication. Rather, gene duplication may drive the modularization
of functional networks through specialization, thereby disentangling cellular systems.

Gene duplication and loss are major forces of evolutionary innova-
tion, facilitating the development of new functions and pruning of
old ones1,2. Nonetheless, the natural history of gene duplication and
loss is poorly understood. What classes of genes readily evolve
through duplication and loss? Do whole-genome duplication events
reshape the genome in a qualitatively distinct way? What innovations
typically arise from gene duplication events? Studies addressing such
questions3–11 have been limited by the difficulty of tracing the exact
evolutionary history of genes.

The growing availability of sequenced genomes enables the direct
reconstruction of a genome-wide history of gene duplication and loss
across species3,7. Here, we describe a computational method for
reconstructing this history and apply it to the genomes of seventeen
Ascomycota fungi spanning 300 million years of evolution12–21. The
results suggest evolutionary principles applicable for fungi and pos-
sibly more generally.

Method for identifying orthologues and paralogues

Systematic study of gene duplication and loss requires reliable
resolution of gene orthology and paralogy, a notoriously difficult
problem22–31. We designed SYNERGY, a scalable method for resolv-
ing gene ancestry for all genes across multiple genomes (Fig. 1,
Supplementary Fig. 1)32. The input is a species phylogeny and, for
each extant species, the sequences of predicted genes and their
chromosomal positions. SYNERGY partitions these genes into
‘orthogroups’. Each orthogroup consists of all (and only) the genes
descended from a single ancestral gene in their last common ancestral
species, and is associated with a gene tree that describes the history of
speciation, duplication and loss events for its genes (Methods).

An orthogroup catalogue for Ascomycota fungi

We applied SYNERGY to the complete set of 121,050 predicted pro-
tein-coding genes from seventeen genomes of Ascomycota fungi,

including the model organisms Saccharomyces cerevisiae and
Schizosaccharomyces pombe (Fig. 2a, Methods). The phylogeny
includes a whole-genome duplication (WGD) event14,19,33 (Fig. 2a,
red star). SYNERGY produced a catalogue of 30,110 orthogroups
(Fig. 2b). Of these, 19,006 were singleton genes with no recognizable
orthologues (Supplementary Note 1). We further analysed the 11,103
multigene orthogroups. The orthogroups and trees are available at
http://www.broad.mit.edu/regev/orthogroups/.

SYNERGY made high-quality predictions by several benchmarks
(Methods, Supplementary Notes 2 and 3). To test sensitivity to the
input quality, we applied SYNERGY to different subsets of organisms
and of genes in each genome. We examined how each orthogroup
was reconstructed under these perturbations, deriving four confi-
dence measures for each orthogroup. Overall, SYNERGY was
remarkably robust (Supplementary Note 2). SYNERGY’s predictions
also agree well with those of two independent manual assignments
of orthology and paralogy21,33 (Supplementary Note 3). Finally,
SYNERGY showed high specificity and sensitivity on data attained
by forward simulated evolution.

Gene duplication and loss across Ascomycota evolution

The reconstructed orthogroups show a range of evolutionary pat-
terns. These are summarized by the extended phylogenetic profile
(EPP) of each orthogroup, defined as the number of genes present in
each extant and ancestral species. For example, ‘uniform’ ortho-
groups (Fig. 2c), with no duplication or loss events, have EPPs con-
sisting only of ones. Other orthogroups exhibit duplications (Fig. 2d,
red star) or losses (Fig. 2d, blue strikes) and their EPPs may consist of
noughts, ones, twos, and so on (Fig. 2e). An orthogroup with at least
one gene present in all species (Supplementary Fig. 2b) is ‘persistent’.
From the EPP, we can derive an extended copy-number variation
profile that records the change in copy number at each position in the
species tree (Supplementary Fig. 2).
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By tallying these profiles from all orthogroups, we find the num-
bers of genes, appearances, duplications and losses that occurred
throughout Ascomycota evolution (Fig. 2f, Supplementary Fig. 3a).
The 5,972 (54%) orthogroups present in the clade spanning the
Hemiascomycota and Euascomycota were defined as ‘ancestral’,
accounting for 6,047 genes in the reconstructed last common
ancestor. 4,873 (84%) of Saccharomyces cerevisiae genes belong to
these ancestral orthogroups. The ancestral orthogroups are enriched
in essential S. cerevisiae genes; 1,008 of 1,047 genes essential for
growth in rich medium are ancestral (P , 10230, Fischer’s exact
test) as are 668 of 730 genes essential only for growth in other con-

ditions34 (P , 1025). Nevertheless, 36 essential genes are not ances-
tral (for example, 9/80 spindle pole body proteins, P , 1026),
suggesting that new essential functions can arise, albeit rarely
(Supplementary Note 4).

Orthogroups that are not ancestral ‘appear’ at specific points in the
phylogeny and reveal evolutionary innovations. For example, the
clade spanning S. cerevisiae and Kluyveromyces waltii is marked by
appearing orthogroups with S. cerevisiae genes related to meiosis and
sporulation (51/166 sporulation genes, P , 1026), including the
master meiosis regulator IME135 (Supplementary Fig. 2a). The
Euascomycota clade contains many appearances (3,726 orthogroups,
72% of all appearing orthogroups); roughly half show no similarity to
other orthogroups or to a more distant fungus, Cryptococcus neofor-
mans (Supplementary Fig. 3d), demonstrating extensive genomic
innovation within the Euascomycota16.

We also find coordinated gene losses, indicating major changes in
biological processes. For example, Yarrowia lipolytica has significant
losses in orthogroups containing meiotic recombination genes
(P , 1025). Interestingly, the genes lost in Candida glabrata extensively
overlap those independently lost in the ancestor of Candida albicans
and Debaryomyces hansenii (P , 10220), possibly reflecting the fact
that these are all opportunistic or occasional human pathogens.

Copy number volatility corresponds to a functional dichotomy

The observed variation in copy number changes among orthogroups
is inconsistent with random expectation (Fig. 3a, Methods). We
assigned a volatility score to each orthogroup depending on the
number and phylogenetic position of duplication and loss events,
with 1,018 uniform orthogroups at one end of the scale and 313
‘volatile’ orthogroups (score .3 s.d. above the mean) at the other
(Fig. 3a). Evolutionary forces have acted very differently on these two
classes: the uniform and volatile orthogroups show diametrically
opposed patterns in their function, regulation and essentiality in
S. cerevisiae (Fig. 3, Supplementary Table 1).

We first tested for functional distinctions between uniform
and volatile orthogroups, based on gene ontology annotations in
S. cerevisiae36. Volatile orthogroups are enriched (P , 1025) for genes
that encode peripheral transporters, receptors and cell wall proteins,
and genes that participate in stress responses. In contrast, uniform
orthogroups are enriched (P , 1025) for genes involved in essential
growth processes, genes residing in the nucleus, nucleolus, mito-
chondrion, endoplasmic reticulum and Golgi apparatus, and genes
essential for viability.

We next examined whether the evolutionary dichotomy is also
aligned with the transcriptional program of S. cerevisiae. Using data
from 1,216 gene expression profiles, we organized S. cerevisiae genes
into a hierarchy of 163 transcriptional modules, each containing
functionally related genes with a coherent expression pattern37

(Fig. 4a, Supplementary Fig. 4, Supplementary Table 2, and
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Figure 1 | The SYNERGY algorithm. a, Orthogroup construction.
SYNERGY starts (top) with a collection of genes (A1, B1, C1 and so on), their
chromosomal order (grey lines) and sequence distances (blue arrows; arrows
of the same thickness have similar sequence distances). It then builds
orthogroups as it climbs the species tree. First, it collects the genes in species
A and B that share a common ancestor in species X (second panel, orange
ovals). Then, it merges orthogroups formed in the previous stage with the
genes in C, resulting in new orthogroups representing ancestral genes in
species Y (third panel, yellow ovals). The orthogroups assembled at each
stage are associated with gene trees reflecting divergence, duplication and
loss events (bottom). b, Gene tree reconstruction and refining orthogroup
assignments. An unrooted phylogeny is reconstructed for the genes and sub-
orthogroups in each putative orthogroup (dashed oval). Some rootings
(purple arrow) indicate that all the genes descended from a common
ancestor (for example, X3, bottom left). Others (green arrow) show that a
duplication occurred at the root of the gene tree (for example, X2 and X3,
bottom right). In the latter case, the orthogroup is partitioned before
proceeding.
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Figure 2 | A gene ancestry catalogue for Ascomycota fungi. a, Species tree
showing the Hemiascomycota (pink), Euascomycota (green), and
Archeascomycota (blue) clades, the WGD (red star), and post-WGD species
(darker pink). b, Distribution of orthogroup sizes. Grey bars, total number
of orthogroups of a certain size (number of genes). Black bars, the number of
persistent orthogroups of a certain size. The uniform arrow points to
orthogroups, which are persistent orthogroups with exactly 17 genes. The
singleton arrow points to orthogroups with a single gene. c, A uniform
orthogroup. The topology of the gene tree (left panel) is identical to that of

the species tree. d, A non-uniform orthogroup with a single duplication
event (red star) and two loss events (blue strikes). e, The extended
phylogenetic profile of the orthogroup in d summarizes the number of genes
at each extant and ancestral species in the tree (numbered boxes).
f, Reconstructed evolutionary events and gene counts. Each species is
annotated with the number of known or reconstructed genes (rectangles).
Pie-charts on branches denote the fraction of appearing (green), duplicated
(red), and lost (blue) genes inferred in the corresponding branch (see
Supplementary Fig. 3 for exact numbers).
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Methods). Analysing the volatility scores of these transcriptional
modules, we see that the evolutionary dichotomy follows the regula-
tory branches (Fig. 4c, d, Supplementary Table 3). Modules in the ‘cell
cycle and meiosis’ and ‘fundamental processes’ branches are enriched
(P , 1024) for uniform and persistent orthogroups, whereas modules
in the ‘development’ and ‘stress and carbohydrate metabolism’
branches are enriched (P , 1024) for volatile orthogroups.

These distinctions indicate a limit not only on the ability to lose key
growth genes, but also on the ability to maintain them in duplicate.
As suggested by the ‘‘gene balance hypothesis’’9, one reason for this

may be that such genes often encode components of essential cellular
machineries requiring stoichiometric balance. Indeed, we found that
S. cerevisiae genes encoding core components of protein complexes38

are enriched in uniform orthogroups (338/844 complex ‘core’ genes,
P , 10232). Furthermore, uniform and persistent orthogroups are
enriched for S. cerevisiae genes displaying haploinsufficiency39

(P , 1024 and P , 1026, respectively). However, the dichotomy
extends beyond protein complexes to many cellular processes and
includes orthogroups with moderately low and high volatility scores
(Fig. 3b), suggesting a general principle affecting the vast majority of
genes in the genome.

To test whether differential flexibility in copy number between
uniform and volatile orthogroups reflects global functional con-
straints, we examined the variation in their respective transcripts
and proteins. We found that the volatile orthogroups are enriched
in genes whose expression changes significantly in response to many
single-gene knockouts40 (P , 1025–10222; notably deletions of chro-
matin modifiers), genes with noisy levels of protein abundance
within isogenic S. cerevisiae cells41 (P , 1024), genes the transcription
of which is regulated through the SAGA complex and the TATA box42

(P , 1029), and genes with variable RNA expression across species43

(P , 10211) (Fig. 3, Supplementary Table 1). Conversely, the uni-
form orthogroups are enriched in genes whose expression is largely
unchanged in response to single-gene knockouts, genes whose pro-
tein levels tend to be tightly controlled (P , 1028), genes whose
transcription is TATA-independent and regulated through TFIID42

(P , 10224), and genes whose RNA expression shows less variation
across species (P , 10215) (Fig. 3, Supplementary Table 1).

These results highlight a general bipolar principle that governs
tolerance to duplications and losses. Copy-number variation in
stress-responsive genes may not only be tolerable but beneficial, allow-
ing adaptation to diverse ecological niches. In contrast, genes essential
for cell growth, including those necessary for intricate complexes,
cannot readily tolerate such noise and tend not to evolve by gradual
duplication and loss. This evolutionary dichotomy aligns closely with
a bipolarity in gene function, transcriptional program and expression
noise across cells, strains and species41,43, all reflecting similar func-
tional constraints on the amount of gene products in the cell.
Furthermore, shared functional constraints on copy-number vari-
ation also manifest in remarkably synchronized and concerted pat-
terns of specific duplications and losses in many orthogroups
harbouring functionally related or interacting genes (Supplementary
Note 5, Supplementary Figs 5 and 6, and Supplementary Table 4).

Whole-genome duplication alters the nature of duplication

We next explored whether these functional principles generalize to
the WGD event. We found that duplications associated with the
WGD show a strikingly different pattern (Fig. 4e, Supplementary
Table 3): many transcriptional modules that maintain little duplica-
tion elsewhere in the phylogeny are associated with a high level of
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volatility during the WGD. Examples include ‘ribosome biogenesis’
in all post-WGD lineages (P , 1025) and ‘ER protein modification’
in Saccharomyces castellii (P , 1023).

Thus, the WGD is associated with a qualitatively different pattern
of duplication. The ‘gene balance hypothesis’4,9 postulates that this
effect is due to post-WGD retention of paralogues for all members of
a complex. Indeed, S. cerevisiae genes with either haploinsufficiency39

or overexpression44 phenotypes are enriched in orthogroups that
duplicated only in the WGD (P , 1029). Furthermore, several mod-
ules representing essential machineries are enriched for WGD para-
logues45 (for example, ‘rRNA biogenesis’ P , 1025, and ‘ribosome’,
P , 10236). However, the expanded scope of the WGD is observed
beyond complexes within more volatile modules. The simultaneous
duplication of all genes in a module in a WGD may permit retention
of paralogues in orthogroups that are otherwise constrained against
duplication, and may be a principal way in which WGD events con-
tribute to evolutionary innovations4,9.

Gene duplication results in limited biochemical divergence

We next explored the types of functional innovations that arise from
gene duplications. In principle, both paralogues can either ‘retain’

the same function (Fig. 5a) or one (or both) can ‘migrate’ to assume a
distinct function (Fig. 5b, c). Migration can either reflect the develop-
ment of a novel function (neofunctionalization11, Fig. 5b) or a divi-
sion of labour, in which each paralogue assumes only some functions
of the ancestral gene (subfunctionalization11, Fig. 5c). Given the long-
postulated importance of gene duplication in innovation1,2, we
hypothesized that migration would be the predominant evolutionary
mode.

We quantified the extent to which paralogous gene pairs remain in
or migrate from a variety of gene classes in S. cerevisiae (gene ontology
functional categories, genes with shared regulatory mechanisms, pro-
tein complexes and transcriptional modules). We calculated the frac-
tion of paralogous pairs that are retained within each class (Methods,
and Supplementary Figs 7, 8). To avoid confounding factors, we
studied only cases in which both paralogues had been annotated and
the annotation had not been inferred solely from sequence similarity.
Surprisingly, our analysis shows that paralogous pairs rarely migrate
between functional gene ontology categories (Supplementary Figs 7–9,
and Supplementary Table 5). The retention rate is highest for the
‘molecular function’ categories (92%) and somewhat lower for ‘bio-
logical process’ (85%) and ‘cellular component’ (81%) categories.
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To reveal innovation at a finer resolution than the relatively coarse
functional classes, we measured the fraction of shared interaction
partners for each pair of paralogues in molecular networks. We
examined both biochemical networks46 of physically interacting
proteins (reflecting molecular function), and genetic networks46 of
synthetic phenotypes in double mutants (reflecting biological
processes). We find that in both networks roughly half of the para-
logues share a significantly high proportion of their interaction part-
ners (136/318 pairs in the genetic network and 225/543 in the
biochemical network), much more than would be expected in com-
parable (degree-preserving) random networks (Methods, Supple-
mentary Fig. 10b, f). Thus, many pairs show little migration from
their pre-duplication organization (Supplementary Fig. 11a), sup-
porting the broader result at both the biochemical and the functional
level.

The remaining paralogues typically share no interaction partners
and may indicate neofunctionalization (Supplementary Fig. 10a, e).
Indeed, paralogous pairs had more biochemical interaction part-
ners than would be expected by chance11 (11.64624.73 versus
6.99612.66; P , 1023, Mann–Whitney U-test), providing global
evidence for neofunctionalization. Many of these ‘disjoint paralogue
pairs’ are dispersed in the biochemical network (78% are separated

by four or more proteins), implying divergence in molecular func-
tion (Supplementary Fig. 11b). In contrast, half of them are imme-
diate neighbours in the genetic network (Supplementary Fig. 11c),
suggesting a related biological process. This is consistent with the role
of duplicate genes as either genetic ‘back-ups’ when their paralogues
are compromised6,47 or with division of labour through subfunctio-
nalization (see below).

Gene duplication innovates through regulatory divergence

Another source of innovation is regulatory divergence. We inspected
the migration of paralogous pairs with respect to gene classes re-
presenting regulatory mechanisms (genes that are targets of the same
transcription factor48 or contain the same cis-regulatory motif48 or
RNA-binding motif49) or expression patterns (transcriptional mod-
ules). We find that paralogous genes usually migrate with respect to
these gene classes. In most cases (70%), regulatory gene classes con-
tain no retained paralogy relations within them, reflecting either
novel regulation or regulatory specialization between paralogues
(Supplementary Figs 7f, h and 9d, e). Transcriptional modules
exhibit an intermediate behaviour, with 26% of paralogous gene
pairs having migrated between modules, both within and between
the major branches of the module hierarchy (Supplementary Figs 7d,
8 and 9f).

Our analysis shows that paralogues diversify most frequently at the
level of regulation, less frequently through changes in their cellular
component, biological process or molecular interactions, and rarely
in biochemical function. Although some of these differences may
stem from variations in the quality and resolution of available anno-
tations, multiple functional and regulatory data sources support
this broad distinction. This highlights inherent limitations of gene
duplication in accomplishing molecular innovation. It also empha-
sizes the overwhelming importance of regulatory divergence in driv-
ing functional divergence and reconfiguring molecular systems after
duplication5,8.

Coordinated migration of multiple paralogues is rare

When several genes in a class are duplicated they can either migrate in
a coordinated manner resulting in two paralogous classes (Sup-
plementary Fig. 12) or disperse into different classes (Fig. 5b). We
expect coordinated migration after simultaneous duplications
(for example, WGD4). To test this, we counted the number of para-
logous gene pairs that connect each pair of gene classes (Sup-
plementary Fig. 9).

Surprisingly, coordinated migration is rare: gene classes (func-
tional, regulatory, or transcriptional) rarely share more than one or
two paralogous relations, regardless of the overall proportion of
paralogues retained (Supplementary Fig. 9). The few observed para-
logous classes are very small and formed gradually (see, for example,
Supplementary Fig. 12). Thus, paralogues overwhelmingly disperse
as individuals rather than migrate in a coordinated fashion. Although
theory suggests4 that paralogous classes might form in a single con-
certed step (such as after a WGD), we observed little evidence of this
here.

The same patterns of retention, migration and interaction are
observed even among paralogues derived only from the WGD
(Supplementary Fig. 8b, data not shown) and validated by manual
curation33. Thus, while the WGD allows qualitatively different gene
duplications, the subsequent patterns of innovation (or lack thereof)
follow the same general trajectory for both WGD and non-WGD
paralogues.

Conclusions

We set out to uncover the evolutionary potential and constraints of
gene duplication and loss. We created a rich resource of evolutionary
history in fungi and compared these evolutionary patterns with a
wealth of functional and genomics data for S. cerevisiae, to uncover
the principles that govern copy number changes in Ascomycota.
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Figure 5 | Functional conservation and innovation of paralogues in classes
and networks. Shown is the reconstructed functional history of several
paralogous pairs of S. cerevisiae genes (circles with gene name). After
duplication (arrow), paralogous gene pairs can be either retained within the
same class (a), migrate to assume new functions (b), or specialize into
distinct functions, resulting in modularization (c).
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What is the contribution of gene duplication to system evolution
and how does it affect the modularity of molecular systems? Earlier
studies suggested that paralogous modules form in massive duplica-
tion events4, but we found that paralogous modules are rare, even
after a WGD. An alternative mechanism is suggested by the fact
that many paralogous pairs genetically interact with each other
despite having no shared physical interactions (Supplementary Fig.
11c). This may indicate a partial ‘division of labour’ (subfunctiona-
lization) between two paralogous proteins that become physically or
temporally separated6. Such specialization could modularize a mole-
cular network by severing links within a network when duplicating a
node50. For example, a single ancestral gene may have participated in
two distinct complexes (Fig. 5c). If each of the paralogues specialized
to optimally perform one of the functions and interact only with the
members of one of the complexes, the resulting network will be
more modular. Thus, increasing gene copy number may eventually
simplify a system rather than making it more complex. Modulari-
zation could relax opposing constraints on a single component and
thus set in motion further specialization and refinement11. As our
knowledge of molecular and genetic networks improves, further
studies can systematically assess this possibility.

Principles similar to those described here may apply to copy num-
ber variation in metazoan genomes. For example, evidence from
vertebrates and Arabidopsis suggests that genes encoding signalling
molecules and transcription factors are duplicated in WGD events,
but rarely otherwise3,7,9. The reconstruction algorithm and analytical
framework here make it possible to test such hypotheses in other taxa,
and will facilitate other novel studies of the evolution of genes, gen-
omes and systems.

METHODS SUMMARY
Orthology assignment and gene tree reconstruction. SYNERGY assigns orthol-

ogies in a step-wise, bottom-up fashion, solving it for each ancestral node in a

species tree, starting at the leaves and concluding at the root. At each stage,

SYNERGY first clusters together the genes or orthogroups from previous stages

that share significant sequence similarity into new putative orthogroups (Fig. 1a).

It then constructs a phylogeny of these intermediate orthogroups (Fig. 1b) using

a modified neighbour-joining procedure based on the amino acid similarities

that have been pre-computed and shared synteny scores. The sub-trees from

each stage are based on the reconstructions at earlier stages. Each tree is rooted

using a score based on sequence similarity, conserved synteny, and the inferred

number of duplications and losses. Trees that invoke fewer unlikely duplication

and loss events will be favoured over those that incur many such events. If the

rooted tree indicates that all the orthogroups (genes) in that tree descended from

a single hypothetical gene at the current stage, the cluster is defined as an

orthogroup along with its tree (Fig. 1b, left). Otherwise, the orthogroup is

partitioned by removing the inferred root of the gene tree (Fig. 1b, right). This

process may be repeated until each orthogroup consists of genes that share a

single common ancestor at the current level of reconstruction. Thus, after each

stage, a complete orthology assignment and gene tree reconstruction for the

genes below that node has been made. These are used as the input to subsequent

stages at higher nodes in the species tree. When this procedure is completed at the

root of the species tree, the genes for all species have been assigned to their

orthogroups and placed in their respective trees.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Pre-processing for orthogroup reconstruction. An exhaustive sequence sim-

ilarity search between all protein sequences was performed using the FASTA

sequence alignment tool51. FASTA identifies pairs of sequence segments with

significant similarity and subsequently performs a full alignment between then,

thus returning a single hit per pair of similar genes. All hits whose expectation

value E was below 0.1 were subsequently treated as potential homologues. This

lenient threshold allows many homology relations to be considered. We then

computed the amino acid similarity between each pair of potential homologues

using the substitution model of ref. 52.

The SYNERGY procedure. SYNERGY assigns orthologies by tracing all genes in

the species below a given node in the species tree to their reconstructed ancestral

genes on the basis of sequence similarity and shared gene order32. Briefly, begin-

ning at the leaves of the tree and traversing backwards chronologically, sets of

orthogroups for two daughter species that share significant sequence similarity

are assembled into candidate orthogroups at the stage pertaining to each internal

node. (The orthogroups for the daughter species were identified at the previous

stages; for an extant species each gene is a singleton orthogroup.) The candidate

orthologues are then positioned on a phylogenetic gene tree using a modified

neighbour-joining procedure that reconstructs the phylogeny of orthogroups at

that stage using the amino acid similarities that have been pre-computed and

shared synteny scores53. Synteny scores are computed by counting the fraction of

neighbouring genes that are assigned to the same orthogroup according to the

provisional orthology assignments. The sub-trees joined at each stage are based

on the reconstruction at earlier stages. Each tree is rooted using a combined score

based on sequence similarity, conserved synteny, and the inferred number of

duplications and losses. Trees that invoke fewer unlikely duplication and loss

events will be favoured over those that incur many such events. If the rooted tree

determines that a candidate orthogroup’s genes are not all descended from

a single ancestral gene, the orthogroup is partitioned to two candidate

orthogroups by removing the inferred root of the gene tree. This process may

be repeated on the two new trees until each tree represents genes that share a

single common ancestor at the current level of reconstruction. The orthology

assignments and trees obtained at each stage of the algorithm are used as the

input to the next stages, involving higher nodes in the species tree. The interim

trees are also used to compute the distances between orthogroups by using the

neighbour-joining distance update rule when nodes on the tree are joined. When

this procedure is completed at the root of the species tree, the genes for all species

have been assigned to their orthogroups and placed in their respective trees. Full

details of the procedure are available in the companion technical manuscript32.

Bootstrap evaluation. To assess the sensitivity of SYNERGY’s orthology assign-

ments to both the choice species and their protein-coding gene predictions, two

bootstrap-based confidence measures were calculated. A ‘branch-bootstrap’ was

performed by systematically removing branches from the species tree and count-

ing the number of orthology assignments that changed. A ‘gene-bootstrap’ was

similarly executed by hiding each predicted open reading frame in the data set

with a fixed of probability of 0.2. For each bootstrap run, a predicted orthogroup

was validated for the number of orthology assignments that were not designated

during that run (‘soundness’), and the proportion of the original orthologous

pairs among the new predictions (‘completeness’). For each pair of orthologues

within an orthogroup from a bootstrap run, an assignment was considered to be

inconsistent either if the pair was assigned as orthologues at a point in the species

tree that deviated from the original assignment or if they were not originally

assigned as orthologues at all. The average number of consistent assignments

across each experiment was used as the branch- and gene-bootstrap confidence

measures for an orthogroup’s soundness and completeness. A detailed descrip-

tion of this procedure is given in Supplementary Note 1.

Genome sequences. The predicted protein sequences and their genomic

locations were downloaded from the following sources. From the

Saccharomyces Genome Database12: S. cerevisiae (downloaded July 2005),

S. paradoxus (accession number AABY01000000), S. mikatae (accession number

AABZ01000000), S. bayanus (accession number AACA01000000) and S. castellii

(accession number AACF00000000). From Génolevures15: C. glabrata (accession

number CR380947–CR380959), K. lactis (accession number CR382121–

CR382126), D. hansenii (accession number CR382133–CR382139) and

Y. lipolytica (accession number CR382127–CR382132). From the Ashbya

Genome Database14: A. gossypii (accession number AE016814-AE01682). From

Kellis et al.19: K. waltii (accession number AADM01000000). From the Candida

Genome Database13: C. albicans (accession number AACQ00000000). From

The Broad Institute Fungal Genome Initiative (http://www.broad.mit.edu/

annotation/fgi/): Aspergillus nidulans (accession number AACD00000000),

Fusarium graminearum (accession number AACM00000000), Magnaporthe gri-

sea (accession number AACU00000000), Neurospora crassa (accession number

AABX00000000) and Cryptococcus neoformans (accession number

AACO01000000). From PombeDB21: S. pombe (accession numbers

CU329670–CU329672).

Species tree. The species tree topology representing the phylogenetic relations

between the Ascomycota fungi was compiled from several sources33,54,55 and

subsequently validated using the results from our orthogroup assembly by con-

catenating the multiple sequence alignments from 50 sampled uniform

orthogroups and obtaining the maximum-likelihood tree topology using the

Phylip package’s default parameters56. This sampling procedure was repeated

ten times, with the same tree topology resulting each time. A manual correction

to this topology was introduced as previously described33, swapping the locations

of S. castellii and C. glabrata owing to chromosome-based evidence suggesting

that C. glabrata is in fact more closely related to the Saccharomyces sensu stricto

clade. Branch lengths for the tree presented in Fig. 1a were estimated using a

maximum-likelihood approach using multiple site rate variation with the default

parameters57. Branch lengths were not used in any of the subsequent analyses.

Functional gene classes. We compiled a total of 3,395 gene classes, obtained

as follows: 1,794 from the Gene Ontology36 hierarchy, 87 from the Kyoto

Encyclopedia of Genes and Genomes58 (KEGG), 107 from the BioCyc database59,
1,022 from the MIPS database of manually curated protein complexes60, 310

from a data set describing the targets genes bound by various transcription

factors48, 70 from a data set describing the target genes harbouring a given cis-

regulatory element in their promoter48, and 5 from a data set describing the

targets of the RNA binding proteins from the PUF family49. These classes were

used for constructing the transcription module hierarchy (see below). In addi-

tion, the following gene classes were included in various analyses, but were not

included in the construction of the module hierarchy: genes controlled by the

SAGA and/or TFIID transcription complexes42, genes with and without TATA

box control43, genes with large levels of expression variation between yeast spe-

cies43, genes with high and low levels of noise in protein abundance41, haploin-

sufficient genes39, genes whose overexpression reduces fitness44, and genes

belonging to complex cores, attachments and modules based on high through-

put assays38.

Functional orthogroup classes. We used the aforementioned S. cerevisiae-based

gene classes to define orthogroup classes by projecting the S. cerevisiae annota-

tions onto the orthogroups containing S. cerevisiae genes.

S. cerevisiae protein interaction networks. We constructed separate biochem-

ical and genetic protein interaction networks using both manually curated and

high-throughput data sources46.

Defining orthogroup copy number variation profiles. To measure the changes

of gene copy number through either duplication or loss events, we assigned a

copy number variation profile to each orthogroup. The profile is defined by

inspecting the extended phylogenetic profiles belonging to an orthogroup, and

subtracting the number of losses observed at each index in the species tree from

the number of duplications. We increment this copy number variation profile at

the last common ancestor identified for the orthogroup, indicating its ‘age’.

Coherence of copy number variation profiles. To assess the coherence in gene

copy number variation across a class of orthogroups, we first calculated the class’

centroid extended copy number variation profile (ECVP) by averaging the

ECVPs from all the orthogroups belonging to a class. This centroid is then

applied to estimate the degree of deviation between the orthogroups belonging

to a class by summing the L1 distance from each of the class’ orthogroups to it.

We compare this deviation to that of 10,000 randomly assigned orthogroup
classes, each containing the same number of ECVPs. The fraction of times the

deviation is equal to or less than that of the orthogroup class is the measure (P-

value) we use to evaluate the coherence of that class. Copy number variation

occurs at each individual branch of the species tree, so we similarly define a

coherence profile for an orthogroup class by evaluating the copy number vari-

ation coherence for each position along the species tree.

Copy number variation in protein interaction networks. To test the relation

between proximity in protein interaction networks and similarity in copy num-

ber variation, we first computed the difference (using the L1 distance) between

the ECVPs for each pair of proteins in the network, ignoring pairs that belong to

the same orthogroup (hence sharing the same profile). Next we averaged these

differences among all proteins within a given radius in the network. To deter-

mine whether these averages were significant, we repeated this computation by

shuffling profile assignments to proteins in the network 1,000 times, obtaining

the expected range of average differences between pairs of proteins in the net-

work for each radius.

Statistical benchmark of orthogroup evolutionary history. To benchmark the

volatility in gene copy number for each orthogroup, we used the estimated rates

of duplications and losses along each branch of the species tree to calculate the

log-probability of the observed number of such events in each orthogroup,

assuming that they occur according to a standard Poisson distribution. This
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statistic is used as a measure of volatility for each orthogroup. We compare this

volatility metric to those of 10,000 hypothetical orthogroups with randomly

generated duplications and losses (based on the empirical rates). In our analysis

we label those orthogroups the volatility of which deviates more than three

standard deviations from the mean of the random distribution as being signifi-

cantly volatile.

Statistical enrichment tests. To identify the annotations in which each

orthogroup class was significantly enriched, we projected the class’ annotations

as described above, calculated the fraction of orthogroups from that class that

contained a given annotation and used the hypergeometric distribution to cal-

culate a P-value for this fraction (compared with the null hypothesis of choosing

the same number orthogroups at random). We corrected for multiple tests using

the false discovery rate correction with a 0.01% false rate.

Construction of S. cerevisiae transcription module map. We constructed the

hierarchy of transcriptional modules following the procedure presented by Segal

et al.37. We applied this procedure to a yeast data set and followed it by manually
selecting which modules to use in the hierarchy. We note that although it is not

highlighted in their manuscript, this method creates modules in a hierarchical

fashion. Full technical details on the construction of the map are at the end of this

section.

Estimating functional divergence of paralogous genes in hierarchical annota-
tion data. We estimated the functional divergence between a pair of paralogous

genes by considering the most specific gene class in the annotation hierarchy that

each gene was assigned to (for gene ontology we ignored all assignments that

were attributed only to computational sequence analysis). We regarded a pair of

genes as functionally diverged only if both genes are assigned to at least one

annotation class and they are not both assigned to the most specific annotations

of either of the two genes.

Computing degree of conserved interactions between paralogues. We used

two statistics to compute the degree of conserved interactions between pairs of

paralogous proteins. The first was simply the fraction of shared interactions

between both proteins. For this we counted the number of interactions each

protein takes part in (a1 and a2 for proteins 1 and 2, respectively) and the number

of interactions they both share (s). The fraction of shared interactions is thus:

f 5 s/[min(a1, a2)]

We also used the subfunctionalization index (Isf) as previously described11 to

characterize how diverged a pair of paralogues’ interactions are. This is calcu-

lated as:

Isf 5 1 2 (s 1 ja1 2 a2j)/t

where s is as above and t is equal to (a1 1 a2 – s). This statistic gives a reasonable

estimate of the degree of subfunctionalization in the absence of neofunctiona-

lization, because subfunctionalization would reduce the number of shared inter-
actions. This measure considers the proportion of ancestral interactions that are

no longer shared between the paralogues and the extent of subfunctionalization

for these interactions.

Estimating significance of shared protein interaction neighbourhood. To

estimate the significance of the shared protein interaction neighbourhood

between pairs of paralogues, we first calculated the degree of conserved inter-

actions and compared this to the degree of shared interactions between the two

paralogues in a degree-preserving randomized network, obtained by swapping

edges between random pairs of nodes 106 times. We repeated this procedure

10,000 times, and assigned a P-value to the shared protein interaction neigh-

bourhood of a pair of proteins according to the number of times the fraction of

shared interacting partners between paralogues is equal to or greater than the

fraction in the real network.

Homology searches. To identify putative homologies between orthogroups and

the C. neoformans genome, we first constructed a tree-assisted multiple sequence

alignment from each orthogroup’s protein sequences using their reconstructed

gene trees and the MUSCLE alignment software61. We then constructed a

sequence profile from this alignment, and executed a homologous protein search

using the HMMSEARCH profile search software, employing an E-value cutoff of

1.0 (ref. 62).

DNA microarray data set. We compiled a collection of 1,216 previously pub-

lished microarray experiments (Supplementary Table 6). We normalized the

expression of each gene g in every data set separately as in ref. 37. For data sets

generated using Affymetrix chips, we first take the log (base 2) of g’s expression

value in each array (truncating expression values that are below ten). For data

sets generated using spotted complementary DNA chips, we use the log-ratio

(base 2) between the measured sample and the control sample. In both types of

data sets, we subsequently normalize the (log) expression value of gene g in each

array to its average expression in all the arrays in the same data set by subtracting

its average in that data set from each of its expression measurements. After this

normalization, the mean value of a gene within each data set is zero.

Details of transcriptional module hierarchy construction. The transcription

module hierarchy was constructed in a step-wise process as in ref. 37.

Step 1: Identifying arrays where gene classes significantly change in expression.

To identify the arrays where each gene class is significantly induced (or

repressed), we defined the induced (or repressed) genes in each array to be those

genes whose change in expression is greater (less) than twofold. For each gene

class and each array, we calculated the fraction of genes from that class that are

induced (or repressed) in that array, and used the hypergeometric distribution to

calculate a P-value for this fraction (compared to the null hypothesis of choosing

the same number genes at random). We corrected for multiple tests using the

false discovery rate correction with a 1% false rate.

Step 2: Identification of gene class clusters. We performed (bottom-up) hier-

archical clustering of the gene classes in the matrix of all significant array–gene

class pairs. We manually selected a hierarchy of gene class clusters corresponding

to the cluster boundaries defined automatically, and assigned a biologically

meaningful name to each cluster. We obtained a total of 163 such gene class

clusters (excluding the root node). The transcriptional modules were defined

from the genes in those gene class clusters (below), and organized according to

the same hierarchy.

Step 3: Testing consistency of a gene with expression of a gene class. Given a

class of genes G and a gene g, we test whether the expression of g is consistent with

the significant changes in the expression of G using the following procedure. We

first identify the subsets of arrays I and R where G is significantly induced and

repressed, respectively. We then measure the extent in which the expression of g

changes by more (or less) than twofold in arrays in I (or R) with the score

Score(g)~
X

fa [I j g is induced in ag
{ log (pa)z

X

fa [R j g is repressed in ag
{ log (pa)

where pa is the fraction of genes in the array a that are induced (or repressed) by

more than twofold for arrays in I (or in R). This score assigns more weight to

induction in arrays where there are fewer induced genes (and respectively for

repression).

We evaluate the significance of Score(g) with respect to the null hypothesis in

which the genes in each array are randomly permuted. Under this null hypo-

thesis, Score(g) is the sum of independent binary random variables, one for each

array in I and R. The random variable corresponding to array a attains the value –

log(pa) with probability pa and the value of 0 with probability 1 2 pa. Because

Score(g) in this model is a sum of independent random variables, its mean m and

variance s2 are the sum of the means and variances, respectively, of the these

variables, and can be computed analytically:

m~
X

a [ I|R

{pa log pa

s2~
X

a [ I|R

pa(1{pa) log2 pa

By the central limit theorem, the distribution of Score(g) under the null hypo-

thesis can be closely approximated by a gaussian distribution with mean m and

variance s2. We use standard methods for computing the tail probability of a

gaussian distribution to compute the probability of attaining a score as large as

the observed score under the null hypothesis.

Step 4: Deriving modules from clusters of gene classes. For each cluster of gene

classes, we define G to be the union of the gene classes in the cluster. We then test

each gene in G for consistency (as described above). The resulting module con-

sists of genes the expression of which is significantly consistent with the express-

ion of the gene class (after false discovery rate correction for multiple hypotheses

using a 0.01% false rate).
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