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ABSTRACT
Motivation: The accurate detection of orthologous segments (also
referred to as syntenic segments) plays a key role in comparative
genomics, as it is useful for inferring genome rearrangement scena-
rios and computing whole genome alignments. Although a number
of algorithms for detecting orthologous segments have been propo-
sed, none of them contain a framework for optimizing their parameter
values.
Methods: In the present study, we propose an algorithm, named
OSfinder (Orthologous Segment finder), which uses a novel sco-
ring scheme based on stochastic models. OSfinder takes as input
the positions of short homologous regions (also referred to as
anchors) and explicitly discriminates orthologous anchors from non-
orthologous anchors by using Markov chain models which represent
respective geometric distributions of lengths of orthologous and non-
orthologous anchors. Such stochastic modeling makes it possible to
optimize parameter values by maximizing the likelihood of the input
dataset, and to automate the setting of the optimal parameter values.
Results: We validated the accuracies of orthology mapping algo-
rithms on the basis of their consistency with the orthology annota-
tion of genes. Our evaluation tests using mammalian and bacterial
genomes demonstrated that OSfinder shows higher accuracy than
previous algorithms.
Availability: The OSfinder software was implemented as a C++ pro-
gram. The software is freely available at http://osfinder.dna.bio.keio.ac.jp
under the GNU General Public License.
Contact: hacchy@dna.bio.keio.ac.jp
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
The term orthologous segment is defined as a set of genomic seg-
ments in different organisms descended from a common ancestor
without large rearrangements (Dewey et al., 2006). The accurate
detection of orthologous segments is essential for the following:
inferring rearrangement-based phylogenies (Tesler, 2002; Bourque
et al., 2004), reconstructing ancestral genomes (Bourque et al.,
2005; Murphy et al., 2005; Ma et al., 2006), computing whole
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genome alignments (Dewey et al., 2006; Gibbs et al., 2004; Water-
ston et al., 2002), identifying orthologous genes (Hubbard et al.,
2005; Zheng et al., 2005), and detecting non-coding functional
elements such as regulatory elements (Frazer et al., 2004). The pro-
blem of identifying orthologous segments is referred to as orthology
mapping (Dewey et al., 2006).

The general strategy of orthology mapping is as follows: (i) Take
as input the positions of short homologous regions (also referred
to as anchors) detected among the set of genomes under compari-
son. Homologous genes or bidirectional local sequence matches are
commonly used as anchors. (ii) Detect collinear anchors which are
distributed in the same order and have the same orientation. (iii)
Connect closely located collinear anchors. (vi) Output connected
components as orthologous segments.

One difficulty in orthology mapping concerns the fact that a non-
negligible fraction of input anchors are non-orthologous rather than
orthologous. In the case where the anchors are homologous gene
pairs, paralogous gene pairs can be detected as non-orthologous
anchors. In the case where the anchors are homologous sequence
matches, repeat sequences can be detected as non-orthologous
anchors. Conservation scores for anchors and distances between
adjacent anchors constitute important features for distinguishing
between orthologous genomic regions, in which anchors are distri-
buted densely in off-diagonal positions, and non-orthologous geno-
mic regions, in which anchors are distributed randomly. Existing
orthology mapping programs implicitly filter out non-orthologous
anchors in the process of identifying orthologous segments. Pevz-
ner and Tesler (2003) proposed the GRIMM-Synteny algorithm,
which chains every pair of anchors if the distance between the two
anchors is less than a certain distance threshold, removes chained
components if the size of the components is smaller than a certain
size threshold, and reports the remaining components as synteny
blocks. In order to avoid detecting non-orthologous genomic regi-
ons as synteny blocks, it is important to set these two threshold
values appropriately. However, GRIMM-Synteny does not provide
a framework for determining optimal threshold parameters.

ADHoRe (Vandepoele et al., 2002) and SyMAP (Soderlund
et al., 2006) are tools for detecting orthologous segments which are
capable of automatically determining the distance threshold value.
These tools perform detection by starting with a small value of the
distance threshold and increasing it iteratively. This iteration pro-
cess yields an appropriate distance threshold value which maximizes
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the length of the orthologous segments while retaining satisfactory
quality (Soderlund et al., 2006). Both ADHoRe and SyMAP define
the quality of the orthologous segments on the basis of the diago-
nal properties of the anchor positions. For a series of anchors, the
anchor positions are fitted with a linear regression model, and the
quality is computed as the coefficient of determination. Although
these programs can determine the distance threshold automatically,
they require a quality threshold to be set manually.

In addition to the above programs, other orthology mapping
algorithms, including DAGChainer (Haas et al., 2004), AXT-
CHAIN (Kent et al., 2003), DiagHunter (Cannon et al., 2003),
FISH (Calabrese et al., 2003), and Cinteny (Sinha et al., 2007), also
require the manual setting of key threshold parameters. Since these
thresholds can affect the accuracy of orthology mapping programs
and are difficult to set manually, a more sophisticated approach
for determining their parameter values is needed. Furthermore, the
vast majority of existing orthology mapping programs are applica-
ble only in pairwise genome comparisons. Thus, the capability to
compare multiple genomes is also desired.

In the present study, we propose an orthology mapping algorithm,
named OSfinder (Orthologous Segment finder), which uses a novel
scoring scheme based on stochastic models. OSfinder explicitly
discriminates orthologous anchors from non-orthologous anchors
by using Markov chain models, which represent respective geo-
metric distributions of lengths of orthologous and non-orthologous
anchors. Such stochastic modeling makes it possible to optimize
parameter values by maximizing the likelihood of the input data-
set, and to automate the setting of the optimal parameter values.
Moreover, OSfinder can be applied not only in pairwise genome
comparisons, but also in multiple genome comparisons. There is no
limit to the number of genomes which can be compared with our
software.

2 METHODS

2.1 Detecting anchors
The term anchor generally refers to well-conserved short regions between
two or multiple genomes, and is biologically defined as a group of homolo-
gous genes or a set of homologous sequence matches. In our experiments,
anchors were detected between mammalian genomes and between bacte-
rial genomes. Mammalian genomes included those of human, chimpanzee,
macaque, mouse, rat, dog, and opossum, and bacterial genomes included
those of M. tuberculosis (Mtu), M. bovis (Mbo), M. leprae (Mle), and
M. avium (Mpa). Since the method for detecting anchors can affect the accu-
racy of orthology mapping programs, two methods for detecting anchors
were taken into account.

Homologous sequences. Whole genome sequences of the seven mam-
mals and the four bacteria were taken from the Ensembl genome brow-
ser (Hubbard et al., 2007) and the RefSeq database (Pruitt et al., 2007),
respectively. When comparing two genomes x and x′, the whole genome
sequences of x and x′ were input into Murasaki (Popendorf et al., 2007)
with the repeat mask option. The genomic locations of the anchors were then
output by Murasaki. After appropriate format transformation, the Murasaki
output was used as input for the orthology mapping programs. Both pairwise
and multiple anchors can be computed by this work flow.

Homologous gene pairs. Protein sequences encoded in the seven mam-
malian genomes and the four bacteria genomes were drawn from the
Ensembl genome browser and the RefSeq database, respectively. When com-
paring two genomes x and x′, all protein sequences encoded in genome x
were compared with all protein sequences encoded in genome x′ by using

the BLASTP program (Altschul et al., 1990), and protein pairs whose E-
values were less than 10−100 were regarded as anchors. Then, pairs of gene
IDs were transformed into pairs of genomic locations of the genes. The file
containing the genomic positions of the anchors were used as input for the
orthology mapping programs. Only pairwise anchors can be computed by
this work flow.

The statistics for the anchors detected between mammalian genomes are
summarized in Table S3.

2.2 Mathematical definitions
The OSfinder algorithm is based on the following mathematical definitions.
Here, we denote the set of genomes under comparison as G and the set of
pre-computed anchors as a.

Properties of anchors. The genomic position of an anchor ai (∈ a) can
be represented by four properties for each genome x (∈ G): chromosome
ID (ai.chromx), start position (ai.startx), end position (ai.endx), and
strand information (ai.signx) (Fig. 1(a), 1(b)). We define that the values
of ai.startx and ai.endx are positive integer, and represent coordinates in
terms of forward strand positions in the chromosome ai.chromx, where the
first base in a chromosome is numbered 1. That is, for an anchor ai on the
reverse strand, the start and end positions of ai are defined as the coordinates
of the complementary region of ai on the forward strand, and therefore these
two values satisfy the condition ai.startx < ai.endx regardless of the
value of ai.signx. Further, we assume that for the reference genome ẋ, the
value of ai.signẋ is “1” ∀ai ∈ a. The value of ai.signx is “1” if the anchor
region from the genome x is not inverted relative to the anchor region from
the reference genome ẋ, and ai.signx = −1 if the anchor region from the
genome x is inverted relative to the anchor region from the reference genome
ẋ. Note that the choice of the reference genome does not affect the collinear
relation between the anchors.

Collinearity. In comparative genomics, conservations which are distri-
buted in the same order and have the same orientation are referred to as
collinear conservations (Bennetzen and Ramakrishna, 2002; Song et al.,
2002). Two anchors, ai and ai′ , are collinear if the following conditions
are satisfied:

ai.chromx = ai′ .chromx

ai.signx = ai′ .signx

(

ai.endx < ai′ .startx when ai.signx = 1

ai′ .endx < ai.startx when ai.signx = −1,

(1)

∀x ∈ G. Let ai ≺ ai′ denote the case where ai and ai′ satisfy the
conditions shown in Eq. (1).

Anchor graph. The collinear relation defines a partial order between the
anchors. Since a partial order induces a directed acyclic graph (DAG), the
collinear relations can be represented as a DAG (Fig. 1(c)). OSfinder con-
structs a DAG in which a node is an anchor and a directed edge is drawn from
ai to ai′ if ai ≺ ai′ and there is no anchor ai′′ satisfying ai ≺ ai′′ ≺ ai′ .
We call this type of DAG an anchor graph.

Properties of edges. The start and end positions of an edge ej (∈ e)
connecting two anchors (ai and ai′ ) are defined as follows:

ej .startx ≡ min{ai.endx, ai′ .endx} + 1

ej .endx ≡ max{ai.startx, ai′ .startx} − 1.

Length of anchors and edges. The length of an anchor ai and the length
of an edge ej are defined as follows:

ai.length ≡
X

x∈G

(ai.endx − ai.startx + 1)

ej .length ≡
X

x∈G

(ej .endx − ej .startx + 1).

Chains. Chains are genomic segments in which anchors are distribu-
ted densely in off-diagonal positions. Chains correspond exactly to non-
intersecting suboptimal paths in the observed anchor graph, where two paths
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Fig. 1. These figures show a toy problem of detecting chains in which seven
anchors are pre-computed between two genomes A and B. (a) shows the
genomic positions of the seven anchors, in which colored arrows repre-
sent the anchors (either homologous genes or conserved sequences). In this
figure, anchors located on the forward strand are depicted as right arrows,
and anchors located on the reverse strand are depicted as left arrows. (b)
represents the properties of the seven anchors, in which genome A is used as
the reference genome. (c) visualizes the anchor graph by using a dot-plot, in
which anchors are depicted by colored solid lines and edges are depicted by
black broken lines. (d) illustrates that chains (indicated by colored blocks)
correspond to non-intersecting paths in the anchor graph.

are intersecting if their coordinate spans overlap with each other ∀x ∈ G
(Fig. 1(d)).

Orthologous segments. Orthologous segments are defined as genomic
segments descended from a common ancestor without large rearrangements.
An orthologous segment corresponds to a sequence of collinear chains,
where the collinearity of chains is defined in a similar manner to that of
anchors (Fig. S1).

2.3 OSfinder algorithm
In order to identify orthologous segments accurately, orthology mapping
algorithms should be able to distinguish between orthologous and non-
orthologous anchors. For this purpose, OSfinder introduces a set of hidden
variables named labels. A label is assigned to an anchor or an edge, and its
value is either “+” or “−”, where “+” represents an orthologous anchor or
edge and “−” represents a non-orthologous one.

The likelihood for the observed anchor graph is defined by two sets of
variables, namely a set of model parameters M and a set of labels L. By
computing the maximum likelihood solution for M and L, the respective
length distributions of orthologous and non-orthologous anchors (edges) are
fitted to geometric distributions defined by Markov chain models. The opti-
mized model parameters not only determine the optimal length threshold for
anchors (edges) which is used to discriminate between orthologous and non-
orthologous anchors (edges), but also provide the score for anchors (edges)
in the anchor graph. Based on the scores, non-intersecting suboptimal paths
are efficiently extracted from the anchor graph by using a dynamic pro-
gramming technique, and a set of chains is detected. Finally, a sequence
of collinear chains is merged into an orthologous segment in order to fill
large gap regions between collinear chains.

The overall algorithm of OSfinder is composed of the following steps. (i)
Take the genomic positions of the anchors as input. (ii) Construct an anchor
graph. The definition of the likelihood for an anchor graph is described in
“2.3.1 Likelihood for an anchor graph”. (iii) Compute the optimal values
for labels and model parameters. Two optimization algorithms are described
in “2.3.2 Optimization algorithms”. (iv) Extract non-intersecting suboptimal
paths from the observed anchor graph and generate a set of chains. The des-
cription of the extraction algorithm can be found in “2.3.3 Chain extraction
algorithm”. (v) Merge collinear chains and output the merged components
as orthologous segments. The merge algorithm is described in “2.3.4 Merge
algorithm”.

2.3.1 Likelihood for an anchor graph OSfinder models the respec-
tive length distributions of orthologous and non-orthologous anchors (and
edges) in the observed anchor graph by using Markov chain models. These
models have two states, the extend state (X) and the end state (N ), and two
state transitions, X → X and X → N (Fig. 2). We denote the transition
probability from state X to state X as P (X → X|M), and the transi-
tion probability from state X to state N as P (X → N |M), where M
denotes a model. Note that P (X → X|M) + P (X → N |M) = 1.
An anchor (or an edge) whose length is l indicates the transition sequence
(X → X)l−1 → N . Thus, the likelihood for an anchor ai

and the likelihood for an edge ej are defined by the following geometric
distributions:

P (ai|M) = P (X → X|M)(ai.length−1) × P (X → N |M)

P (ej |M) = P (X → X|M)(ej .length−1) × P (X → N |M).

Next, we set up four Markov chain models, namely a model for
representing orthologous anchors (M+

anchor), a model for representing non-
orthologous anchors (M−

anchor), a model for representing orthologous edges
(M+

edge), and a model for representing non-orthologous edges (M−
edge).

OSfinder assumes that the average length of orthologous anchors is grea-
ter than the average length of non-orthologous anchors. This assumption is
implemented in the constraint shown in Eq. (2). Similarly, it is assumed that
the average length of orthologous edges is shorter than the average length
of non-orthologous edges. This assumption is implemented in the constraint
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Fig. 2. Markov chain models in OSfinder.

shown in Eq. (3).

P (X → N |M+
anchor) < P (X → N |M−

anchor) (2)

P (X → N |M+
edge) > P (X → N |M−

edge). (3)

Given a set of model parameters M and a set of labels L, OSfinder defines
the likelihood for an anchor ai and the likelihood for an edge ej as follows:

P (ai|M,L) =

(

P (ai|M+
anchor) if ai.label is “+”,

P (ai|M−
anchor) if ai.label is “−”.

P (ej |M,L) =

(

P (ej |M+
edge) if ej .label is “+”,

P (ej |M−
edge) if ej .label is “−”.

(4)

Given a set of labels L, let a+ be a set of anchors labeled as “+” and a−

be a set of anchors labeled as “−” (a = a+ ∪ a−). Similarly, let e+ be
a set of edges labeled as “+” and e− be a set of edges labeled as “−”
(e = e+ ∪ e−). Then, given M and L, the likelihood for an anchor
graph G = (a, e) is defined as follows:

P (a, e|M,L)

= Πai∈a+P (ai|M+
anchor) × Πai′∈a−P (ai′ |M−

anchor)

× Πej∈e+P (ej |M+
edge) × Πej′∈e−P (ej′ |M−

edge).

(5)

2.3.2 Optimization algorithms The parameter values in our Markov
chain models are optimized so as to maximize the likelihood for the observed
anchor graph. Let M̃ denote a set of optimal model parameters and L̃ denote
a set of optimal labels. M̃ and L̃ are defined by the following equation:

(M̃, L̃) = argmax(M,L)P (G|M,L). (6)

Global maximization algorithm. Given a set of labels L, the conditio-
nally optimal parameter set M̂L is defined as follows:

M̂L = argmaxMP (G|M,L). (7)

The conditionally optimal model parameters can be calculated from the
following equations (see Proof 1 in Supplementary Materials):

P (X → N |M+
anchor) =

|a+|
P

ai∈a+ ai.length

P (X → N |M−
anchor) =

|a−|
P

ai′∈a− ai′ .length

P (X → N |M+
edge) =

|e+|
P

ej∈e+ ej .length

P (X → N |M−
edge) =

|e−|
P

ej′∈e− ej′ .length
.

(8)

Note that P (X → X|M) can be calculated from P (X → N |M) easily.
From Eq. (7), the maximization problem shown in Eq. (6) can be restated

as follows:

max
M,L

P (G|M,L) = max
L

max
M

P (G|M,L)

= max
L

P (G|M̂L,L).

Thus, a naive method to maximize the likelihood for an anchor graph is to
enumerate all possible label sets and to find the label set which maximizes
P (G|M̂L,L). However, the computation of the naive method is infeasi-
ble in terms of computational costs since the number of all possible label
sets is 2(|a|+|e|). Our global maximization algorithm reduces the number
of label sets for enumeration to (|a| + |e| − 2) without losing the ability to
find the global optimum. See “Global maximization method” in Supplemen-
tary Materials for details. The total computational complexity of the global
maximization algorithm is O(|a|2 + |e|2).

Local maximization algorithm. The computation of the global maximi-
zation algorithm is also infeasible when the number of anchors or the number
of edges is extremely large (Table S1). Thus, a fast learning algorithm whose
computational complexity is O(|a| + |e|) is also implemented in OSfinder.

Given a set of model parameters M, the conditionally optimal label set
L̂M is defined as follows:

L̂M = argmaxLP (G|M,L). (9)

The conditionally optimal labels are given by Eq. (10).

ai.label = argmaxlabel∈{+,−}P (ai|M label
anchor)

ej .label = argmaxlabel∈{+,−}P (ej |M label
edge )

(10)

The following algorithm is capable of finding a local optimum.

1. Set the initial model parameters M0. See “Initialization of model
parameters” in Supplementary Materials for details.

2. For each step t (1 ≤ t ≤ tmax)

a. Calculate the conditionally optimal labels by using the parameter
values calculated at step (t − 1). In other words, Lt = L̂M(t−1) .

b. Calculate the conditionally optimal model parameters by using the
labels calculated at step t. In other words, Mt = M̂Lt

c. Stop the iteration if M(t−1) = Mt.

3. Report the parameter values obtained at the end of the above iteration.

It can be proven that the parameters identified by the algorithm locally
maximize the likelihood for the observed anchor graph (see Proof 2 in Sup-
plementary Materials). The default value for tmax is set at 100 in the current
version of OSfinder. Although the fast algorithm calculates a local optimum
rather than the global optimum, our computational experiments using mam-
malian genomes show that the accuracy of the local maximization algorithm
is almost the same as that of the global maximization algorithm (Table S2).

2.3.3 Chain extraction algorithm Given a set of optimal model para-
meters M̃, the score for an anchor ai and the score for an edge ej are defined
as log-odds of two likelihoods as follows:

ai.score = log
P (ai|M

+
anchor)

P (ai|M
−
anchor)

(11)

ej .score = log
P (ej |M

+
edge)

P (ej |M
−
edge)

. (12)

A path in an anchor graph corresponds exactly to a sequence of collinear
anchors. Let apk denote a set of anchors included in a path pk , and epk

denote a set of edges included in pk . In this case, the score for path pk is
defined by the following equation:

pk.score =
X

ai∈apk

ai.score +
X

ej∈epk

ej .score.

The path with the highest score can be efficiently found by using a dyna-
mic programming technique with the following recursive formula for the
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best path ending at anchor ai:

path score(ai)

= ai.score + max

(

maxai′≺ai{path score(ai′ ) + eai′→ai .score}
0 ,

(13)

where eai′→ai represents the edge drawn from anchor ai′ to anchor
ai. After the optimization of the model parameters, the chain extrac-
tion algorithm in OSfinder detects non-intersecting suboptimal paths from
the observed anchor graph. It recursively executes the following operati-
ons: (i) calculation of the list whose i-th element deposits the value of
path score(ai) defined by Eq. (13), (ii) detection of the highest-scoring
path by tracing back from the element which has the highest value of
path score(ai), and (iii) removal of the anchors and edges which are inter-
secting with the extracted path, until there are no paths scoring higher than
zero (Fig. S2). The re-calculation of the list is essential for the detection of
the next highest-scoring path because the removal of the anchors and edges
changes the scores in the list. We call the suboptimal paths chains.

2.3.4 Merge algorithm Given a set of chains, the merge algorithm in
OSfinder performs the following operation on the basis of a user-defined
parameter named minimum segment length:

1. Construct a DAG, where a node is a chain and a directed edge is drawn
from a chain cl to a chain cl′ if cl ≺ cl′ and there is no chain cl′′

satisfying cl ≺ cl′′ ≺ cl′ . We call the DAG a chain graph.

2. Sort the edges in the chain graph in order of increasing edge length.

3. For each edge ej in the sorted order (1 ≤ j ≤ |e|)

a. Check whether there exists any merged component such that its coor-
dinate span overlaps with the coordinate span of the edge ej for at
least one genome x (∈ G), and its length is greater than the minimum
segment length.

b. If no such case exists, merge chains connected through the j-th edge.

4. Report merged components whose length is greater than the minimum
segment length as orthologous segments.

The minimum segment length controls the resolution of the orthology map-
ping. A large value for this parameter is appropriate for analyzing macrorear-
rangements, and a small value for the parameter is appropriate for drawing
detailed dot-plots.

2.4 Evaluation criteria
Since it is impossible to observe the course of evolutionary history, the
evaluation of orthology mapping programs is restricted to simulation experi-
ments (Calabrese et al., 2003; Cannon et al., 2003; Hampson et al., 2003) or
assessment on the basis of the consistency of the target program with other
orthology mapping programs (Cannon et al., 2003). However, simulation
experiments require the mutation models to generate virtual evolutionary
histories, and therefore the evaluation results are inevitably biased with
respect to the mutation models used in the experiment. In addition, exami-
ning the consistency with other programs is not an efficacious methodology
for estimating the accuracy if the compared programs are based on similar
approaches.

In this paper, we estimate the accuracy of orthology mapping programs on
the basis of their consistency with the orthology annotation of genes (Fig. 3).
Let G be the set of genomes under comparison, s = {s1, s2, . . . , s|G|}
be an orthologous segment (a set of segments from different genomes),
and g = {g1, g2, . . . , g|G|} be an orthologous gene group (a set of
genes from different genomes), where sx (gx) is a segment (gene) from a
genome x. Here, we assume that orthologous gene groups do not contain

Fig. 3. Consistency and inconsistency between orthologous gene groups and
orthologous segments. This figure shows the respective genomic locations of
six pairs of orthologous genes (indicated by small arrows) and two pairs of
orthologous segments (indicated by large arrows). The color of the arrows
represents the orthologous relationship where pairs of orthologous genes or
segments have the same color. “◦” (“×”) indicates that the gene pair is con-
sistent (inconsistent) with a certain orthologous segment, and “−” indicates
that the gene pair is neither consistent nor inconsistent with any orthologous
segment.

in-paralogs (Remm et al., 2001; Koonin, 2005) and that orthologous relati-
onships are necessarily one-to-one. Then, we define that g is consistent with
s if, for all x ∈ G, the coding region of gx overlaps with the coordinate
span of sx and the orientation of gx is the same as that of sx. We also define
that g is inconsistent with s if g is not consistent with s and there exists
a genome x in which the coding region of gx overlaps with the coordinate
span of sx.

Given a set of orthologous gene groups and a set of orthologous segments,
let N be the number of orthologous gene groups and NC be the number
of orthologous gene groups with which at least one orthologous segment is
consistent. Let C(si) denote the number of orthologous gene groups which
are consistent with an orthologous segment si and I(si) denote the num-
ber of orthologous gene groups which are inconsistent with an orthologous
segment si. Then, the sensitivity and the specificity are defined as follows:

sensitivity =
NC

N

specificity =

P

i C(si)
P

i C(si) +
P

i I(si)

The F-score is defined as 2pr
p+r

, where p represents the specificity and r
represents the sensitivity. We use the F-score as an indicator of accuracy.

In this paper, the mammalian orthologous gene database SPEED (Vallen-
der et al., 2006) was employed as a reliable source of orthology annotation
data for mammalian genes. Regarding the evaluation of the results of bacte-
rial genome comparisons, orthologous gene pairs were identified on the basis
of BLAST reciprocal best hits (Tatusov et al., 1997, 2003). Orthologous
groups of bacterial genes were calculated by using the method described in
(Vallender et al., 2006).

3 RESULTS
3.1 Accuracy in pairwise genome comparisons
3.1.1 Comparison with DAGChainer and ADHoRe Anchors
detected between pairwise genomes were input into DAGChai-
ner (Haas et al., 2004), ADHoRe (Vandepoele et al., 2002), and
OSfinder, where DAGChainer and ADHoRe were executed not only
with the default parameter values, but also with optimized para-
meter values. The optimization for the DAGChainer and ADHoRe
parameters was performed on the basis of a grid search in order to
maximize the F-score. Two parameters in DAGChainer, the average
expected distance between two orthologous anchors (-g option) and
the maximum allowed distance between two anchors (-D option),
were optimized. Two parameters in ADHoRe, the minimum r2

value (r2 cutoff option) and the maximum distance between the
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Table 1. Accuracy in the pairwise comparison of mammalian genomes

DAGChainer ADHoRe OSfinder
Genomes default grid search default grid Search default

Sn Sp F Sn Sp F Sn Sp F Sn Sp F Sn Sp F
Homologous sequences

human-chimpanzee 99.5 73.1 84.3 - - - - - - - - - 99.0 98.4 98.7
human-macaque 99.1 77.1 86.7 - - - - - - - - - 97.9 96.9 97.4
human-mouse 91.0 88.7 89.8 - - - 47.7 46.5 47.1 - - - 93.5 95.2 94.3
human-rat 89.2 89.4 89.3 - - - 44.8 44.0 44.4 - - - 89.1 90.2 89.6
human-dog 97.3 81.0 88.4 - - - 49.9 42.3 45.8 - - - 95.7 96.0 95.8
human-opossum 50.8 93.8 66.0 - - - 48.4 53.8 50.9 - - - 76.4 83.1 79.6
Averagea 82.1 88.2 83.4 - - - 47.7 46.7 47.1 - - - 88.7 91.1 89.8

Homologous gene pairs
human-chimpanzee 59.3 26.0 36.2 89.8 28.6 43.4 49.0 47.2 48.1 58.0 54.7 56.3 98.7 98.4 98.5
human-macaque 54.9 30.0 38.8 87.2 31.2 46.0 37.9 35.9 36.8 46.4 42.2 44.2 90.6 90.8 90.7
human-mouse 51.9 47.0 49.3 82.5 49.9 62.2 30.6 27.9 29.2 36.8 34.3 35.5 86.8 91.4 89.1
human-rat 47.2 55.5 51.0 77.4 61.0 68.2 30.6 26.6 28.4 36.4 31.2 33.6 85.8 87.6 86.7
human-dog 52.1 84.8 64.5 88.7 82.1 85.3 38.1 36.6 37.3 43.4 42.4 42.9 93.2 95.3 94.2
human-opossum 31.2 78.3 44.6 70.3 65.6 67.9 24.2 19.1 21.2 27.3 20.4 23.3 55.9 55.8 55.9
Average 49.4 53.6 47.4 82.7 53.1 62.2 35.1 32.2 33.5 41.4 37.5 39.3 85.2 86.6 85.8

We show the respective accuracies of DAGChainer, ADHoRe, and OSfinder in the pairwise comparisons of mammalian genomes. Here, “−” indicates that the calculation
of orthologous segments was impossible in our environment due to either time or space limitations.
aFor the purpose of a fair comparison, the respective accuracies in the human-chimpanzee and human-macaque comparisons were not used in calculating the average
values.

anchors (max dist option) were optimized. Since OSfinder automa-
tically optimizes its parameter values, there was no need to perform
grid searches.

Table 1 shows the accuracy of the three programs in the pair-
wise comparison of mammalian genomes. It is worth noting that
OSfinder consistently achieved high F-scores (>85% on average),
regardless of the anchor type. DAGChainer exhibited low F-scores
when the anchors were homologous gene pairs (62.2% with a grid
search), while ADHoRe exhibited extremely low F-scores both
when the anchors were homologous sequences (47.1% with the
default parameters) and when they were homologous gene pairs
(39.3% with a grid search). We discuss the reason for the low
F-scores achieved by ADHoRe when comparing mammalian geno-
mes in the section “Discussion and Conclusion”. These results
demonstrate that OSfinder has greater accuracy than the other two
programs. The average F-scores of OSfinder were notably higher
than those of DAGChainer and ADHoRe, even though the latter two
were executed with optimized parameter values.

The high accuracy of OSfinder is supported further by the results
in the pairwise comparison of bacterial genomes (Table S4). When
the anchors were homologous sequences, the average F-score of
OSfinder was 85.3%, which was 14.2% higher than that of DAG-
Chainer with a grid search optimization and 20.8% higher than that
of ADHoRe with a grid search optimization. When the anchors were
homologous gene pairs, the average F-score of OSfinder was 92.2%,
which was 7.5% higher than that of DAGChainer with a grid search
optimization and 56.2% higher than that of ADHoRe with a grid
search optimization.

3.1.2 Comparison with syntenic nets The UCSC genome brow-
ser provides a common repository for genomic annotation
data (Kuhn et al., 2007; Karolchik et al., 2008). Syntenic nets,
which are unique annotations in the UCSC genome browser, are

Table 2. Accuracy of syntenic nets and OSfinder in the pairwise
comparison of mammalian genomes

Syntenic nets OSfinder
Genomes Sn Sp F Sn Sp F

human-chimpanzee 98.9 85.6 91.8 99.0 98.4 98.7
human-macaque 98.5 66.5 79.4 97.9 96.9 97.4
human-mouse 97.2 69.5 81.0 93.5 95.1 94.3
human-rat 97.1 66.3 78.8 89.1 90.2 89.6
human-dog 98.2 60.7 75.0 95.7 96.0 95.8
Average 98.0 69.7 81.2 95.0 95.3 95.2

genomic regions descended from a single genomic segment in a
common ancestor without macrorearrangements. In Table 2, we pre-
sent the accuracy of syntenic nets together with the accuracy of
OSfinder. For the purpose of a fair comparison, Table 2 displays
the accuracy of OSfinder when homologous sequences were used as
anchors.

We can see in Table 2 the trade-off between the sensitivity and
the specificity. OSfinder achieved a 25.6% higher average specificity
than syntenic nets, while the average sensitivity of syntenic nets was
3.0% higher than that of OSfinder. Regarding the average F-score,
OSfinder achieved a 14.0% higher value than syntenic nets.

3.2 Accuracy in multiple genome comparisons
The accuracy of OSfinder in multiple genome comparisons was
compared with that of the TBA program (Blanchette et al., 2004)
and Mercator (Dewey et al., 2006; Dewey, 2007). The respec-
tive accuracies of these programs were evaluated in comparisons
of mammalian X chromosomes. For the generation of input for
OSfinder, anchors among multiple genomes were detected by using
Murasaki (Popendorf et al., 2007). For the generation of input for
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Table 3. Accuracy in the comparison of multiple mammalian genomes

TBA Mercator OSfinder
Genomes Sn Sp F Sn Sp F Sn Sp F

human-chimpanzee-macaque 96.7 82.7 89.1 97.6 97.6 97.6 97.6 97.6 97.6
human-chimpanzee-macaque-mouse 68.1 43.5 53.1 90.2 85.9 88.0 97.1 97.8 97.5
human-chimpanzee-macaque-dog 96.5 55.0 70.1 95.8 96.9 96.3 96.9 96.9 96.9
human-chimpanzee-macaque-mouse-dog 66.8 33.1 44.3 85.0 81.2 83.0 94.0 97.5 95.7
Average 82.0 53.6 64.2 92.2 90.4 91.2 96.4 97.5 96.9

the TBA program, the BLASTZ alignments (Altschul et al., 1997;
Schwartz et al., 2003) between all pairs of genomes under com-
parison were calculated. For the generation of input for Mercator,
homologous gene pairs were detected between all pairs of genomes
under comparison by using BLASTP program. Note that TBA and
Mercator take as input sets of anchors detected between all pairs of
genomes under comparison, whereas OSfinder takes as input a set of
anchors detected among multiple genomes. Thus, TBA and Merca-
tor require the O(N2) iterations of the calculation of anchors, where
N represents the number of genomes under comparison, whereas
it is sufficient to perform the calculation of anchors among mul-
tiple genomes only once for the input of OSfinder. The detailed
procedures for performing calculations with TBA and Mercator are
described in Supplementary Materials.

Table 3 shows the accuracy in the comparison of multiple mam-
malian genomes. The results contain two important points. The
first is that the accuracy of OSfinder was extremely high, with F-
scores of over 95%. The average F-score of OSfinder was 96.9%,
which was notably higher than that of TBA (64.2%) and Merca-
tor (91.2%). The second point is that the F-scores of OSfinder in
multiple genome comparisons were slightly higher than that in pair-
wise genome comparisons (Table 2). For example, the F-score in
the human-chimpanzee-macaque-mouse comparison (97.5%) was
higher than that in the human-mouse comparison (95.8%). This
tendency is also visible in the results for the human-chimpanzee-
macaque-dog comparison. These results imply that the accuracy
of OSfinder in pairwise comparisons can be improved by adding
closely related genome(s) and by comparing multiple genomes.

In Table S5, we present the accuracy in the comparison of
multiple bacterial genomes. These results also demonstrate the
high accuracy of OSfinder with F-scores over 90%. Table S4 and
Table S5 show that the average F-score in the Mtu-Mbo-Mle (Mtu-
Mbo-Mpa) comparison was higher than that in the Mtu-Mle (Mtu-
Mbo) comparison. The results were the same as the results obtained
from the comparison of multiple mammalian genomes.

4 DISCUSSION AND CONCLUSION
The results in this paper have demonstrated the potential of sto-
chastic models and learning algorithms in OSfinder to improve
the accuracy of orthology mapping in both pairwise and multi-
ple genome comparisons. We have shown that our novel algorithm
makes it possible to identify orthologous segments with accuracy
which is consistently higher than that of other algorithms, without
any manual effort to determine the parameter values.

Quality-based methods, such as ADHoRe (Vandepoele et al.,
2002) and SyMAP (Soderlund et al., 2006), estimate the quality

by computing the coefficient of determination. ADHoRe with a
grid search optimization showed an extremely high accuracy in the
Mtu-Mbo comparison (98.0% in F-score when the anchors were
homologous gene pairs), although its accuracy in the Mtu-Mle
and Mtu-Mpa comparisons was profoundly low (5.1% and 4.9%
in F-score, respectively). Moreover, ADHoRe also showed low
F-scores in mammalian genome comparisons (47.1% in average F-
score when the anchors were homologous sequences). These results
imply that although quality-based methods are excellent approaches
when comparing very closely related genomes, these methods are
not adequate when comparing distantly related genomes where the
positions of the orthologous anchors can not be fitted with linear
regression models.

DAGChainer (Haas et al., 2004) measures the diagonal properties
of the input anchors by utilizing a scoring scheme which is more
relaxed than linear regression models. The scoring scheme makes it
possible to compare distantly related genomes while maintaining a
relatively high F-score (about 80% when the anchors are homolo-
gous gene pairs in the pairwise comparison of bacterial genomes).
The scoring scheme, however, suffers from low specificity when a
large fraction of the input anchors are non-orthologous (e.g., when
the anchors are homologous sequences in the pairwise comparison
of bacterial genomes). Therefore, the accuracy of distinguishing bet-
ween orthologous anchors and non-orthologous anchors is the key
to performing orthology mapping with consistently high accuracy.

The scoring scheme of OSfinder takes into account the distance
between collinear anchors instead of the coefficient of determina-
tion of the linear regression. Furthermore, stochastic models are
employed in OSfinder for accurately distinguishing between ortho-
logous anchors and non-orthologous anchors. Thus, the OSfinder
algorithm consistently achieves high accuracy even when distantly
related genomes are compared and when a large fraction of the
anchors are not orthologous.

With the rapidly increasing amount of sequence data, the auto-
mation of orthology mapping and the ability to compare multiple
genomes will continue to become ever more important for high-
throughput genome analysis. In addition to the seven mammalian
genomic sequences used in our analysis, draft sequences for oran-
gutan (Pongo pygmaeus abelii), cow (Bos taurus), and horse (Equus
caballus) have already been made available in the Ensembl genome
browser. Furthermore, it is expected that over 20 mammalian
genome sequences will become available in the near future. It is
expected that the calculation results of OSfinder can be further
improved by using the increasing number of closely related genome
sequences.
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