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ABSTRACT 

A new approach to rapid, genome-wide identification and ranking of horizontal transfer 

candidate proteins is presented. The method is quantitative, reproducible, and 

computationally undemanding. It can be combined with genomic signature and/or 

phylogenetic tree-building procedures to improve accuracy and efficiency. The method is 

also useful for retrospective assessments of horizontal transfer prediction reliability, 

recognizing orthologous sequences that may have been previously overlooked or 

unavailable. These features are demonstrated in bacterial, archaeal, and eukaryotic 

examples. 
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BACKGROUND 

Horizontal gene transfer can be defined as the movement of genetic material between 

phylogenetically unrelated organisms by mechanisms other than parent to progeny 

inheritance. Any biological advantage provided to the recipient organism by the 

transferred DNA creates selective pressure for its retention in the host genome. A number 

of recent reviews describe several well-established pathways of horizontal transfer [1-4]. 

Evidence for the unexpectedly high frequency of horizontal transmission has spawned a 

major re-evaluation in scientific thinking about how taxonomic relationships should be 

modeled [4-9]. It is now considered a major factor in the process of environmental 

adaptation, for both individual species and entire microbial populations. Horizontal 

transfer has also been proposed to play a role in the emergence of novel human diseases, 

as well as determining their virulence [10, 11].  

There is currently no single bioinformatics tool capable of systematically identifying all 

laterally acquired genes in an entire genome. Available methods for identifying 

horizontal transfer generally rely on finding anomalies in either nucleotide composition 

or phylogenetic relationships with orthologous proteins. Nucleotide content and 

phylogenetic relatedness methods have the advantage of being independent of each other, 

but often give completely different results. There is no "gold standard" to determine 

which, if either, is correct, but it has been suggested that different methodologies may be 

detecting lateral transfer events of different relative ages [2, 12].  

In addition to having good sensitivity and specificity, ideal tools for identifying 

horizontal transfer at the genomic level should be computationally efficient and 

automated. The current environment of rapid database expansion may require analyses to 
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be re-performed frequently, in order to take advantage of both new genome sequences 

and new annotation information describing previously unknown protein functions. Re-

analysis using updated data may provide new insights, or even change conclusions 

completely.  

A variety of strategies have been used to predict horizontal gene transfer using nucleotide 

composition of coding sequences. Early methods flagged genes with atypical G + C 

content; later methods evaluate codon usage patterns as predictors of horizontal transfer 

[13-15]. A variety of so called “genomic signature” models have been proposed, using 

nucleotide patterns of varying lengths and codon position. These models have been 

analyzed both individually and in various combinations, using sliding windows, Bayesian 

classifiers, Markov models, and support vector machines [16-19].  

One limitation of nucleotide signature methods is that they can suggest that a particular 

gene is atypical, but provide no information as to where it might have originated. To 

discover this information, and to verify the validity of positive candidates, signature-

based methods rely on subsequent validation by phylogenetic methods. These cross-

checks have revealed many clear examples of both false positive and false negative 

predictions in the literature [20-23].  

The fundamental source of error in predictions based on genomic signature methods is 

the assumption that a single, unique pattern can be applied to an organism’s entire 

genome [24]. This assumption fails in cases where individual proteins require 

specialized, atypical amino acid sequences to support their biological function, causing 

their nucleotide composition to deviate substantially from the "average" consensus for a 

particular organism. Ribosomal proteins, a well known example of this situation, must 
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often be manually removed from lists of horizontal transfer candidates generated by 

nucleotide-based identification methods [25].  

The assumption of genomic uniformity is also incorrect in the case of eukaryotes that 

have historically acquired a large number of sequences through horizontal transfer from 

an internal symbiont, or an organelle like mitochondrion or chloroplast. For example, the 

number of genes believed to have migrated from chloroplast to nucleus represents a 

substantial portion of the typical plant genome [26]. In this case, patterns of nucleotide 

composition should fall into at least two distinct classes, requiring multiple training sets 

to build successful models using machine learning algorithms. To avoid this complexity, 

many authors propose limiting application of their genomic signature methods to simple 

prokaryotic or archaeal systems.  

Phylogenetic methods seek to identify horizontal transfer candidates by comparison to a 

baseline phylogenetic tree (or set of trees) for the host organism. Baseline trees are 

usually constructed using ribosomal RNA and/or a set of well-conserved, well-

characterized protein sequences [27]. Each potential horizontal transfer candidate protein 

is then evaluated by building a new phylogenetic tree, based on its individual sequence, 

and comparing this tree to the overall baseline for the organism. Unexpectedness is 

usually defined as finding one or more nearest neighbors for the test sequence in 

disagreement with the baseline tree. More recently, a number of automated tree building 

methods have used statistical approaches to identify trees for individual genes that do not 

fit a consensus tree profile [28-32].  

Although phylogenetic trees are generally considered the best available technique for 

determining the occurrence and direction of horizontal transfer, they have a number of 
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known limitations. Analysts must choose appropriate algorithms, out-groups, and 

computational parameters to adjust for variability in evolutionary distance and mutation 

rates for individual data sets. Results may be inconclusive unless a sufficient number and 

diversity of orthologous sequences are available for the test sequence. In some cases, a 

single set of input data may support multiple different tree topologies, with no one 

solution clearly superior to the others. Building trees is especially challenging in cases 

where the component sequences are derived from organisms at widely varying 

evolutionary distances.  

Perhaps the biggest drawback to using tree-based methods for identifying horizontal 

transfer candidates is that these methods are very computationally expensive and time 

consuming; it is currently impractical to perform them on large numbers of genomes, or 

to update results frequently as new information is added to underlying sequence 

databases. Even a relatively small prokaryotic genome requires building and analyzing 

thousands of individual phylogenetic trees. To manage this computational complexity, 

many authors exploring horizontal transfer events have been forced to limit their 

calculations to one or a few candidate sequences at a time. 

More recently, semi-automated methods have become available for building multiple 

phylogenetic trees at once [33, 34]. These methods are suitable for application to whole 

genomes, and include screening routines to identify trees containing potential horizontal 

transfer candidates. However, to achieve reasonable sensitivity without an unacceptable 

false positive rate, these methods still require each candidate tree identified by the 

automated screening process to be manually evaluated. One recent publication described 

the automated creation of 3723 trees, of which 1384 were identified as containing 
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potential horizontal candidates [35]. After all 1384 candidate trees were inspected 

manually, approximately half were judged too poorly resolved to be useful in making a 

determination. Of the remaining trees, only 31 were ultimately selected as containing 

horizontally transferred proteins. Despite the Herculean effort involved in producing this 

data, the authors concluded that it was only a “first look” at horizontal transfer, which 

would need to be repeated when more sequence data became available for closely related 

organisms.  

Given the time and difficulty of creating phylogenetic trees from scratch, a tool that 

automatically coupled amino acid sequence data with known lineage information could 

avoid an enormous amount of repetitive effort in re-calculating well-established facts. It 

is therefore somewhat surprising that currently available methods do not generally take 

advantage of resources like the NCBI Taxonomy database, which links phylogenetic 

information for thousands of different species to millions of protein sequences. One 

notable exception has been the work of Koonin et al., who searched for horizontal 

transfer in 31 bacterial and archaeal genomes by a combination of BLAST searches with 

semi-automated and manual screening techniques [1]. To avoid false positive results, 

these authors felt it necessary to manually check every "paradoxical" best hit, in many 

cases amounting to several hundred matches per microbial genome. While this strategy 

undoubtedly improved the quality of results presented, the extensive amount of time and 

labor required for manual inspection precludes applying the techniques used by these 

authors to larger eukaryotic genomes, or to the hundreds of new microbial genomes 

sequenced since 2001. 
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One potential problem in using taxonomy database information as a horizontal transfer 

identification tool is the difficulty of establishing reliable surrogate criteria for orthology, 

that might avoid the need for extensive re-building of phylogenetic trees. It is well known 

that “top hit” sequence alignments identified by the BLAST search algorithm do not 

necessarily return the phylogenetically most appropriate match. [36]. In addition to 

incorrect ranking of BLAST matches, other difficulties to be overcome include 

differences in BLAST score significance due to mutation rate variability, unequal 

representation of different taxa in source databases, and potential gene loss from closely 

related species [37]. Finally, any detection system dependent on identifying 

phylogenetically distant matches may sacrifice sensitivity in detecting horizontal transfer 

between closely related organisms. 

To address these issues, the DarkHorse algorithm combines a probability-based, lineage-

weighted selection method with a novel filtering approach that is both configurable for 

phylogenetic granularity, and adjustable for wide variations in protein sequence 

conservation and external database representation. It provides a rapid, systematic, 

computationally efficient solution for predicting the likelihood of horizontally transferred 

genes on a genome-wide basis. Results can be used to characterize an organism’s 

historical profile of horizontal transfer activity, density of database coverage for related 

species, and individual proteins least likely to have been vertically inherited. The method 

is applicable to genomes with non-uniform compositional properties, that would 

otherwise be intractable to genomic signature analysis. Because the procedure is both 

rapid and automated, it can be performed as often as necessary to update existing 

analyses. Thus it is particularly useful as a screening tool for analyzing draft genome 
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sequences, as well as for application to organisms where the number of database 

sequences available for taxonomic relatives is changing rapidly. Promising results can be 

then prioritized and analyzed in more depth using independent criteria, such as nucleotide 

composition, manual construction of phylogenetic trees, synteneic neighbor analysis, or 

other more detailed, labor-intensive methods. 
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RESULTS 

Algorithm Overview 

Figure 1 illustrates the basic steps in analyzing a genome using the DarkHorse algorithm, 

with Escherichia coli strain K12 as an example. In addition to protein sequences from the 

test genome and a reference database, program input includes two user-modifiable 

parameters: a list of self-definition keywords and/or taxonomy id numbers, and a filter 

threshold setting. The self-definition keywords determine phylogenetic granularity of the 

search and relative age of potential horizontal transfer events being examined. The filter 

threshold setting is a numerical value used to adjust stringency for relative database 

abundance or scarcity of sequences from species closely related to the test genome. These 

parameters can be varied independently or iteratively in repeated runs to fine-tune the 

scope of the analysis.  

The process begins with a low stringency BLAST search, performed for all predicted 

genomic proteins against the reference database. All BLAST matches containing self-

definition keywords and/or taxonomy id numbers are eliminated from these search 

results. For each genomic protein, the remaining BLAST alignments are filtered to select 

a candidate match set, based on both query-specific BLAST scores and the global filter 

threshold setting. Database proteins with the maximum bit score from each candidate set 

are used to calculate preliminary lineage probability index (LPI) scores. LPI is a new 

metric introduced in this paper, which is key to the genome-wide identification of 

horizontally transferred candidates. Organisms closely related to the query genome 

receive higher LPI scores than more distant ones, and groups of phylogenetically related 

organisms receive similar scores to each other, regardless of their abundance or scarcity 
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in the reference database. Details of the procedure used to calculate LPI scores are 

presented in the Materials and Methods section. 

Preliminary LPI scores are used to re-order the candidate sets, now choosing the 

candidate with the maximum LPI score from each set as top-ranking. These revised top-

ranking matches are then used to refine preliminary LPI scores in a second round of 

calculation. Final results are presented in a tab delimited table of results. An example of 

the program's tab-delimited output is provided as a Additional data file 1. 

Genbank nr was chosen as the reference database for this study, to obtain the widest 

possible diversity of potential matches, but the algorithm could alternatively be 

implemented using narrower or more highly curated databases. The set of query protein 

sequences must be large enough to fairly represent the full range of diversity present in 

the entire genome. The easiest way to ensure unbiased sampling is to include all 

predicted protein sequences from a genome, but this requirement might also be met in 

other ways, for example with a large set of cDNA sequences. Blast searches performed 

using predicted amino acid sequences were found be more useful than nucleic acid 

searches, resulting in fewer false positive matches and giving a more favorable 

signal/noise ratio.   

Parameter settings for the preliminary BLAST search are used as a coarse filter to reduce 

computation time and memory requirements, removing low scoring matches as early as 

possible. These initial settings need to be broad enough to include even very distant 

orthologs, but do not affect final LPI scores as long as no true protein orthologs have 

been prematurely eliminated. To reduce the frequency of single-domain matches to multi-

domain proteins, initial filtering for this study included a requirement for each match to 
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cover at least 60% of the query sequence length. BLAST bit score was used as a metric 

for subsequent ranking and filtering steps, to ensure fairness in analyzing sequences of 

varying lengths.  

Selection and ranking of candidate match sets 

One well-known problem in using the BLAST search algorithm to rank candidate 

matches is that highly conserved proteins can generate multiple database hits with similar 

scores, and quantitative differences between the first hit and many subsequent matches 

may be statistically insignificant. No single, absolute threshold value is suitable as a 

significance cutoff for all proteins within a genome, because degree of sequence 

conservation varies tremendously. In addition to variability among proteins, mutation 

rates and database representation can also vary widely between taxa, so appropriate 

threshold values may need adjustment by query organism, as well as by individual 

protein.  

To overcome these problems, DarkHorse considers bit score differences relative to other 

BLAST matches against the same genomic query, rather than considering absolute 

differences. For each query protein, a set of ortholog candidates is generated by selecting 

all matches that fall within an individually calculated bit score range. The minimum of 

this range is set as a percentage of the best available score for any non-self hit against that 

particular query. The percentage is equal to the global filter threshold setting chosen by 

the user, which can, in theory, vary between zero and 100%. A zero value requires that all 

candidate matches for a particular query have bit scores exactly equal to the top non-self 

match. Filter threshold settings intermediate between zero and 100% require that 

candidate matches have bit scores in a range within the specified percentage of the 
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highest scoring non-self match. In practice, values between 0% and 20% are found to be 

most useful in identifying valid horizontal transfer candidates. The effects of threshold 

settings on the phylogeny of top-ranking candidates are illustrated for genomes from four 

different organisms in Tables 1-7. 

Once candidate match sets have been selected for each genomic protein, lineage 

information is retrieved from the taxonomy database. This information is used to 

calculate preliminary estimates of lineage frequencies among potential database orthologs 

of the query genome. These preliminary estimates are used as guide probabilities in a first 

round of candidate ranking, then later refined in a second round of ranking. 

The probability calculation procedure, described in detail in the Materials and Methods 

section, is based on the average relative position and frequency of lineage terms. More 

weight is given to broader, more general terms occurring at the beginning of a lineage 

(e.g. kingdom, phylum, class), and less weight to narrower, more detailed terms that 

occur at the end (e.g. family, genus, species). To compensate for the fact that some 

lineages contain more intermediate terms than others (for example including super and/or 

sub classes, orders, or families), the calculation normalizes for total number of terms, and 

weights each term according to its average position among all lineages tested, rather than 

an absolute taxonometric rank. The end result is a very fast, computationally simple 

technique to assign higher probability scores to lineages that occur more frequently, and 

lower scores to lineages that occur only rarely. Groups of phylogenetically related 

organisms receive similar lineage probability scores, even if actual matches to the query 

genome are unevenly distributed among individual members of the group.  
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The probability calculation is performed twice during each search for horizontal transfer 

candidates, once to obtain a set of preliminary guide probabilities, and a second time to 

obtain more refined LPI scores. Initial guide probabilities are calculated using one 

sequence from each candidate match set, selected on the basis of having the highest 

BLAST bit score in the set. Once guide probabilities are established, they are used to re-

rank the members of each candidate set by lineage probability instead of bit score, in 

some cases resulting in the choice of a new top-ranking sequence. The lineage-

probability calculation is then repeated using the revised set of top-ranking candidates as 

input, to obtain final LPI scores, which range between zero and one. Additional rounds of 

probability calculation and candidate selection would be possible but are unnecessary; 

lineage probability scores generally change only slightly between the preliminary guide 

step and final LPI assignments.  

Filter threshold optimization 

Selecting a global filter threshold value of zero maximizes the opportunity to identify 

horizontal transfer candidates, but may result in false positives if sequences from closely 

related organisms have BLAST scores that are slightly, but not significantly lower than 

the top hit. Using a higher value for the threshold filter, allowing a wider range of hits to 

be considered in the candidate set for each query, helps eliminate false positive horizontal 

transfer candidates by promoting matches from closely related species over those from 

more distant species. However, as the range of acceptable scores for match candidates is 

progressively broadened, sensitivity to potential horizontal transfer events is 

correspondingly decreased, and true examples of horizontal transfer may be overlooked. 
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The effect of filter threshold cutoff settings on phylogenetic distribution of corrected best 

matches were examined in detail for E. coli strain K12. In this example, all protein 

matches to the genus Escherichia were excluded under the user-specified definition of 

self. In addition, matches containing the terms “cloning”, “expression”, “plasmid”, 

“synthetic”, “vector”, and “construct” were also excluded, to remove artificial sequences 

that might originally have been derived from E. coli.  

Table 1 summarizes the E. coli filter threshold results. BLAST matches above the initial 

screening threshold were found for 4179 (97%) of the original 4302 genomic query 

sequences. With a filter threshold cutoff of 0%, the great majority of lineage-corrected 

best matches are closely related Enterobacterial proteins, as expected. As the filter 

threshold is progressively broadened, this number increases from 4000 to a maximum of 

4112, reflecting the promotion of matches from closely related species to a best candidate 

position. However some E. coli proteins had no matches to Enterobacterial database 

entries, even at a filter threshold setting of 100%, where all BLAST hits above the initial 

screening minimum are considered equivalent. Matches to these sequences are found 

only in phage, eukaryotes, and more distantly related bacteria, and represent either 

database errors, gene loss in all other sequenced members of this lineage, hyper-mutated 

sequences unique to this strain of E. coli, or candidates for lateral acquisition.  

Table 2 shows detailed information for the eight eukaryotic sequences initially identified 

as best matches to E. coli. For each E. coli query sequence, the top hit match using a 0% 

threshold is shown first (bold). The second line for the same query (italicized) shows 

results at the lowest filter value where an alternate match with a higher LPI score was 

found. In five cases, increasing the filter threshold revealed additional BLAST matches to 
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sequences with higher LPI values, suggesting the original match might be incorrect. In 

three cases, no better match was found, supporting statistical validity of the original 

result.  

Interpreting BLAST search results for E. coli requires caution, because there is an 

especially high risk of finding matches to contaminating cloning vector and host 

sequences in genomic data for other organisms. This problem is illustrated by the first 

entry in Table 2, for the E. coli beta-galactosidase protein AAC74689, a common cloning 

vector component. The top ranking match for this query at a filter value of zero is 

Arabidopsis protein CAC43289. The BLAST alignment for this match is excellent, with 

99% identity over all 603 amino acids of the query sequence, but application of a filter 

threshold setting of 2% reveals another extremely good match in the database, 

ZP_00698534 from E. coli’s close relative Shigella boydii. In the original BLAST 

analysis, the Shigella protein received a bit score of 1255, compared to 1261 for the 

Arabidopsis protein, even though both proteins have same percent identity and query 

coverage length. Clearly this difference in bit score is insignificant, and difficult to detect 

without adequate surveillance. Ranking the matches by decreasing LPI score solves this 

problem; the Arabidopsis match has an LPI score of 0.009, but the Shigella match has an 

LPI score of 0.98. This example shows how a combination of threshold range filtering 

and LPI score ranking can successfully eliminate false positive artifacts due to cloning 

vector contamination.  

The second and third queries in Table 2, for the enzymes mannitol phosphate 

dehydrogenase and cytosine deaminase, also appear to have matched inappropriate 

database sequences when using a zero threshold setting. Using a filter threshold of 20% 
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or lower overcomes these apparent errors, replacing them with nearly equal matches in a 

species closely related to the original query organism. In contrast, the fifth query of Table 

2 (AAC75891) illustrates the danger of setting threshold values that are too lenient. In 

this case, using a filter threshold of 80%, a BLAST hit from a phylogenetically closer 

organism (Salmonella) has been promoted even though it has only 28% identity to the 

query, versus 85% in the original top hit. This promotion is clearly unjustified. 

For optimal DarkHorse performance, threshold values need to be set at a level that is 

neither too high nor too low. The best threshold setting for an individual query organism 

depends on the abundance of closely related sequences in the database used for BLAST 

searches. This value is difficult to measure directly, but can be calibrated approximately 

by measuring the maximum candidate set size returned using different threshold settings 

on a genome-wide basis, as shown in Figure 2. For this data set, the original BLAST 

search included a maximum possible number of 500 matches per query. Values shown in 

the graph indicate the highest number of candidate matches found for any single query in 

the test genome after filtering at the indicated threshold setting.  

For an organism like E. coli, with sequences available for many closely related species, 

the maximum number of candidate set members appears to reach a plateau when using a 

filter threshold setting of 10-20%. After that point, further broadening of the threshold 

compromises the effectiveness of the filtering process. For query organisms from more 

sparsely represented phylogenetic groups, such as the archaeon Thermoplasma 

acidophilum, there are very few examples of closely related species in the database. In 

these cases, a lower filter threshold cutoff value is appropriate. For some organisms, it 
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may make sense to limit the filter threshold setting to zero, promoting only those matches 

whose scores are exactly equivalent to the initial top hit.  

Threshold filtering can help eliminate statistical anomalies of BLAST scoring, but there 

are some types of database ambiguities it cannot resolve. One such example is the sixth 

entry in Table 2, a match between E. coli sequence AAC73796 and database entry 

BAB33410, isolated from snow pea pods (P. sativum). This match covers 100% of the E. 

coli query sequence at 100% identity, but only 46% of the pea protein. Sequences 

distantly related to the matched region exist in several other strains of E. coli and 

Shigella, but were not recognized by threshold filtering because they fall below the 

minimum BLAST match retention criteria. No related sequences are found in any 

eukaryotes other than snow pea, even at an e-value of 10.0. If this were a true case of 

horizontal transfer, closeness of the match would imply a very recent event, and 

phylogenetic distribution would suggest direction of transfer as moving from E. coli to 

the seed pods of a eukaryotic plant. But this scenario is biologically unlikely. A more 

reasonable explanation is that the sequence identity is due to an undetected artifact 

introduced during cloning of the pea sequence. This sequence was obtained from a single 

isolated cDNA clone, and reported in a lone, unverified literature reference [38]. This 

type of error is difficult to avoid in uncurated databases like Genbank nr. 

Definition of database "self" sequences 

The definition of “self” sequences for a query organism is configured by a list of user-

defined self-exclusion terms. These terms, which can be either names or taxonomy ID 

numbers, provide a simple way to adjust phylogenetic granularity of the search, and to 

compensate for over-representation of closely related sequences in the source database. 
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Although the LPI scoring method is naturally more sensitive to transfer events between 

distantly related taxa than to closely related species, adjusting breadth of the self-

definition keywords for a test organism can reveal potential horizontal transfer events that 

are either very recent, or progressively more distant in time. In practice, this is 

accomplished by choosing a narrow initial self-definition, then iteratively adding one or 

more species with high LPI scores to the list of self-definition keywords in the next round 

of analysis. Query sequences acquired since the divergence of two related genomes can 

be identified by comparing LPI scores and associated lineages plus or minus one of the 

relatives as a self-exclusion term. 

As an example of this process, the self definition for Escherichia coli strain K12 was first 

defined narrowly by a set of strain-specific names and NCBI taxonomy ID numbers 

(K12, 83333, 316407, 562). This self-definition includes strain K12, as well as matches 

where E. coli strain is unspecified, but still permits matches to clearly identified genomic 

sequences from alternate strains, for example O157:H7. A second self-definition list was 

created using genus name Escherichia alone, which eliminates all species and strains 

from this genus. The list was then iteratively broadened by adding the names Shigella and 

Salmonella. Table 3 illustrates how this process changes the lineages of best matches 

chosen by DarkHorse. As the breadth of self-definition terms is expanded, the total 

number of matches declines, because fewer database proteins remain that meet minimum 

BLAST requirements. As total number of Enterobacterial matches declines, matches to 

other classes of bacteria increase because they are the best remaining alternative. The 

maximum LPI value (LPImax), which is assigned to the lineage with the greatest number 

of matches, becomes progressively lower as the self-definition is expanded. The total 
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number of matches having this LPImax value also declines, and the lineage associated with 

the LPImax becomes phylogenetically more distant from the original test genome. The 

histograms in Figure 3, grouped into bins of 0.02 units, show how the overall distribution 

of LPI scores changes from high to low as the number of closely related database taxa are 

depleted by broader self-definition terms. In this respect, using a coarser set of self-

exclusion terms for an abundantly represented organism mimics the distribution of 

organisms that are more sparsely represented in the database.  

Table 4 illustrates how changing self-definition keywords affects predictions of 

horizontal transfer for some individual protein examples. The first two rows in Table 4 

contain sequences that are highly conserved among all strains of E. coli, as well as many 

closely related species. Matches to protein AAC75738 have lower e-values than matches 

to AAC74994 simply because AAC75738 is a much shorter protein (61 versus 495 amino 

acids). In these two rows, self-definition keywords do not affect LPI scores, which 

remain at maximum for both keyword sets.  

LPI scores are also unchanged by self-definition keywords for the query sequences 

shown in rows 3 and 4, but for a different reason. Both of these sequences appear likely 

to have been recently acquired by E. coli strain K12, since its divergence from other E. 

coli strains. The closest database alignments to protein AAC75802 are with two species 

of delta-Proteobacteria, Geobacter sulfurreducens and Desulfuromonas acetoxiadans (not 

shown). This protein does not align well with any other strains of E. coli, nor with any 

other Enterobacterial genomes. Gene loss from such a large number of species seems 

unlikely as an alternative explanation to horizontal transfer.  
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Protein AAC75097 also appears to have been recently acquired by strain K12. Its origin 

is unclear; it aligns closely not only with a protein from Psychromonas ingrahamii, found 

in polar ice, but also with multiple examples among gamma-proteobacteria 

(Actinobacillus succinogenes and Mannheimia succiniciproducens), as well as epsilon-

proteobacteria (Campylobacter jejuni) and eubacteria (several Lactobacillus and 

Streptococcus species). These organisms or their relatives could all potentially be found 

in human or bovine gut microflora, providing ample opportunity for gene exchange with 

both E. coli and each other. Differences in nucleotide composition between the proteins 

in rows 3 and 4 and the consensus for E. coli strain K12 (approximately 50% GC) also 

support recent lateral acquisition. Genomes from eubacteria in the Bacillus and 

Lactobacillus groups typically have a mean GC content around 35%. 

The fifth row in Table 4 illustrates an example of likely horizontal gene transfer that 

occurred less recently. Using the narrowest set of self-definition keywords, protein 

AAC76015 has an LPI score of 0.993, equal to the LPImax, but the score drops 

substantially when the self-definition is expanded to include all species in the genus 

Escherichia. Closest alignments to this protein are found in multiple species of gamma-

proteobacteria from the Pseudomonas lineage, but not in any other Enterobacteria besides 

E. coli strains K12, 536, UTI89, and F11. The atypically high GC percentage of this E. 

coli sequence is also consistent with transfer from members of genus Pseudomonas, 

whose genomes typically have mean GC contents of 60% or higher. 

Table 5 illustrates a similar keyword expansion experiment performed with Arabidopsis 

thaliana. Adding Oryza to the self-definition list increases the number of bacterial 

matches from 162 to 812. Of these 812 matches, 336 are to cyanobacterial species, 
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perhaps reflecting historical migration of chloroplast sequences derived from bacterial 

endosymbionts to the plant nucleus prior to the divergence of Arabidopsis and Oryza. 

The histograms in Figure 4 show how expanding the self definition not only lowers the 

top LPI scores, but also clarifies the separation of matches into three distinct groups, 

representing viridiplantae (scores 0.5 - 0.7), metazoan, fungal, and apicomplexan 

eukaryotes (scores 0.3 - 0.4), and bacteria (scores below 0.03).  

One limitation to the technique of expanding self-definition terms is that it also reduces 

the total number of non-self BLAST matches. More than 90% of the original E. coli 

query sequences still have database matches above the BLAST initial screening criteria 

after excluding the three closest genera, but adding just a single genus to the Arabidopsis 

self-definition eliminated 20% of the original matches. For phylogenetic groups with less 

extensive database representation, exclusion of too many related groups may reduce the 

number matches to a point where it is too low to reasonably represent the test genome.  

LPI score significance 

The DarkHorse algorithm does not provide explicit criteria for classifying sequences as 

horizontally transferred or not; rather it ranks all candidates within a genome relative to 

each other. Selecting a single absolute value as a universal cutoff between positive and 

negative candidates for horizontal transfer neither makes biological sense, nor can it be 

supported computationally in the absence of unambiguous, known, and generally 

accepted positive and negative examples. Score distributions vary widely according to the 

evolutionary history of a test organism, the definition of “self’ chosen, and the number of 

closely related sequences in the database that lie outside that definition of self for a 

particular query.  
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Despite the difficulty of defining exact classification boundaries, some solid general 

principles can be applied to interpreting LPI score distributions, as illustrated by 

histograms of binned data in Figures 3-7. Query protein sequences with the highest LPI 

scores (LPImax) can be eliminated from consideration as horizontal transfer candidates 

with a high degree of confidence, because they are matched with proteins from lineages 

most closely related to the query organism. By definition, LPI scores must fall between 

zero and one. Within these limits, LPImax values cover a fairly broad range, with lower 

scores characteristic of organisms with few close relatives in the database, or with self-

definition settings that have intentionally filtered out the closest relative sequences. 

Query protein sequences with intermediate LPI scores may or may not have been 

horizontally transferred, and will require analysis by independent methods to classify 

definitively. The number of query proteins with intermediate scores typically decreases as 

more closely related genomes are added to the underlying database. Scores at the lowest 

end of the LPI score distribution represent the best candidates for horizontal transfer, 

because their closest database matches belong to lineages that are most distantly related 

to the query organism. In the most extreme cases, if the closest match falls in a different 

kingdom, these sequences can have scores of 0.1 or lower. 

 Bacterial and Archaeal Examples 

Two microbial organisms previously demonstrated by multiple bioinformatics methods to 

have high rates of horizontal gene transfer were re-analyzed for comparison using the 

DarkHorse algorithm. Euryarchaeotal species Thermoplasma acidophilum has been 

suggested to have experienced lateral gene exchange specifically with Sulfolobus 

solfataricus, a distantly related crenarchaeote that lives in the same ecological niche [39]. 
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The hyperthermophilic bacterium Thermotoga maritima is believed to have undergone 

particularly high rates of horizontal gene exchange with archaeal species sharing its 

extreme habitat [40-42]. Each of these genomes was analyzed using its genus name as a 

self-exclusion term, and filter threshold cutoff values ranging from 0-40%.  

The 1494 predicted protein sequences of T. acidophilum had numerous best matches to 

distantly related organisms, including both Sulfolobus, as expected, and a variety of 

bacterial species (Table 6, Figure 5; raw data in Additional data file 2). Using a filter 

threshold of zero, the LPI score for the Sulfolobus lineage was 0.42, substantially below 

the Picrophilus and Ferroplasma lineages, with LPI scores of 0.76 - 0.79. The number of 

query proteins with best matches to Sulfolobus proteins was 106, consistent with a 

previous study that found 93 laterally transferred proteins agreed upon by three different 

prediction methods, with an additional 90 agreed upon by two out of the three methods 

[34]. In addition, DarkHorse analysis identified 97 query sequences most closely matched 

to bacterial proteins, which were not examined in previous studies. These matches 

included species like Thermotoga maritima, which may themselves may have acquired 

archaeal sequences from a Thermoplasma relative. This multi-level data complexity 

undoubtedly contributes to the inconsistency of horizontal transfer predictions from 

different bioinformatic methods. 

Table 7 and Figure 6 summarize LPI score distributions for Thermotoga maritima (raw 

data provided in Additional data file 3). Database matches scoring above the minimum 

BLAST criteria were found for 1440 (78%) of 1846 predicted proteins in the Thermotoga 

genome. With a cutoff filter value of zero, the majority of matches, 617, were to bacteria 

of the Firmicutes/Clostridia lineage, generating LPI scores of 0.54 - 0.55 for these 
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lineages. An LPImax value of 0.55 is much lower than that observed for many other 

microbial genomes, reflecting the absence of a truly close relative in the source database. 

The most abundant genus in the Clostridia group was Thermoanaerobacter, but this 

genus had only 265 matches. Other bacterial species from the Firmicutes lineage had LPI 

scores of 0.46 to 0.50, and more distant bacterial lineages had LPI scores between 0.33 

and 0.41. At the lowest end of the score distribution were 208 matches to archaeal 

sequences, with LPI values of 0.1 or less. These archaeal matches represented 11.3% of 

the Thermotoga genome, consistent with previous reports suggesting that between 11-

24% of proteins in this species have been laterally acquired [1, 41]. The wide variability 

in literature predictions for numbers of horizontally transferred genes reflects the 

difficulty of assigning definitive classifications by any single bioinformatic method. 

However, LPI score distributions have captured and quantified the scarcity of 

orthologous sequences from closely related species in the source database, an important 

factor contributing to this discrepancy. 

Eukaryotic Examples 

The parasitic amoeba Entamoeba histolytica is believed to have lost its mitochondria and 

many enzymes associated with aerobic metabolism as an adaptation to its parasitic 

lifestyle and anaerobic habitat in the human gut. At the same time, this organism appears 

to have gained a set of enzymes not found in other eukaryotes, supporting anaerobic 

fermentation pathways. These enzymes may have been obtained by lateral gene transfer 

from phagocytized bacterial prey. In support of this hypothesis, a previous study has 

identified 96 genes considered most likely to have been laterally acquired, using a 

combination of automated and manual phylogenetic methods [43].  
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To compare DarkHorse predictions with those obtained by other methods, the E. 

histolytica genome was analyzed using the genus name as a self-definition, and filter 

threshold settings of 0-40%. Out of 9775 predicted protein sequences, only 3573 (37%) 

had matches above the minimum BLAST criteria, reflecting the scarcity of database 

sequence relatives. The maximum number of best matches to a single query rose abruptly 

from 33 to 497 when raising the threshold filter setting from zero to 2%. These results 

suggest that database coverage for this organism is so sparse that filter settings higher 

than zero, shown in Table 8, are probably too lenient.  

The LPI score distribution for E. histolytica is divided into several distinct phylogenetic 

clusters (Figure 7; raw data in Additional data file 4). The low LPImax value of 0.56, 

associated with 694 matches to genus Dictyostelium, confirms the scarcity of related 

species in the database. Best matches with LPI scores between 0.3 - 0.5 were associated 

with a wide diversity of other eukaryotic organisms, including plants, animals, and fungi 

as well as protozoa. The bacterial cluster of best matches had LPI scores between 0.04 - 

0.07, and archaeal best matches had scores below 0.02. Previous work did not distinguish 

between archaeal and bacterial matches in E. histolytica, but grouped them all together 

among the 96 predicted lateral transfer candidates. Finding the archaeal sequence 

matches is particularly interesting, because they represent potential evidence supporting 

the theory of archaeal contributions to virulence in bacterial human pathogens [10].  

Using a zero filter threshold cutoff, DarkHorse found non-eukaryotic best matches for 86 

of the 96 E. histolytica genes previously identified as lateral transfer candidates. Of the 

ten differences, four were due to revisions in E. histolytica gene models - the older 

predicted Entamoeba sequences are no longer present in the current Genbank version of 
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the genome. One disagreement occurred because the bacterial match proposed by Loftus 

et al did not pass the initial DarkHorse BLAST pre-screening criteria for orthology, with 

an alignment length covering less than 60% of the query sequence. One of the remaining 

five differences was found by DarkHorse to have a best match in Mastigamoeba 

balamuthi, and the remaining four to proteins in D. discoideum. These are both amoeboid 

species representing close database relatives of E. histolytica. If these five E. histolytica 

sequences were laterally acquired, it must have been prior to evolutionary divergence 

from other eukaryotic ameboid species. It is possible that the Dictyostelium and 

Mastigamoeba sequence matches missed by previous analysis were not yet available at 

the time the work was done, therefore representing false positives. If so, this highlights 

the importance of re-analyzing phylogenetic data as new sequences for relatives of the 

query organism become available.  

The most abundant bacterial and archaeal matches in the E. histolytica genome were to 

species known to inhabit the human digestive tract, including oral pathogen Tannerella 

forsythensis (45 matches), gut symbiont Bacteroides thetaiotaomicron (21 matches), and 

archaea from the genus Methanosarcina (40 matches). All 45 T. forsythensis matches 

point to a single bacterial cell surface-associated protein, BspA, previously shown to 

mediate dose-dependent binding to the human extracellular matrix components 

fibronectin and fibrinogen [44]. Sixteen best matches in Methanosarcina point to 

archaeal relatives of this same protein. Interestingly, there were no DarkHorse best 

matches to T. forsythensis or BspA in the genome of Dictyostelium discoideum, and only 

five matches to B. thetaiotaomicron and three to Methanosarcina. 
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The true biological relationships involved in E. histolytica gene evolution are quite 

complex, probably including multiple horizontal transfer events between eukaryotes, 

archaea, and bacteria that may themselves contain previously acquired archaeal 

sequences. Using a filter threshold setting of zero, DarkHorse identified an additional 60 

archaeal and 350 bacterial best matches that were not described in the original E. 

histolytica genome paper. The most likely reason for this discrepancy is sub-optimal 

sensitivity of Pyphy [33], the automated phylogenetic tree building software used by 

Loftus et. al., when dealing with complex data sets. The Pyphy tree-building parameters 

were originally designed to find simple paralogous sequence relationships between 

closely related clades. Lower than expected Pyphy sensitivity has been described by other 

authors attempting to use it for horizontal gene transfer analysis across wide phylogenetic 

distances [34]. 
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DISCUSSION 

The algorithm presented here combines sequence alignment, database mining, statistical, 

and linguistic analysis tools in a single unified application. It compensates for differences 

in protein conservation by using BLAST scores in a relative, rather than an absolute 

context, with uniquely determined criteria for each genomic protein being tested. BLAST 

scores are used to define a set of candidate matches for each test protein, which are then 

ranked using a second, independent method, based on lineage frequency of matches over 

the entire genome. The power of the algorithm resides in its ability to integrate sequence 

alignments for individual proteins with phylogenetic statistics for an entire genome into a 

single quantitative metric, the LPI score, in a computationally efficient manner. 

Sensitivity can be adjusted by restricting or broadening a filter threshold setting for 

candidate matches, to compensate for differences in database representation of closely 

related organisms or for taxon-specific variability in mutation rates, which can mask 

horizontal transfer events or cause false positives. The method can be tuned to detect 

broader or narrower phylogenetic distance, as well as earlier versus more recent historical 

events, by expanding or contracting initial terms used for definition of “self”. This 

flexibility facilitates adaptation of the program to a variety of different research goals, 

asking different kinds of questions.  

The DarkHorse algorithm incorporates consensus knowledge of lineage relationships 

previously established from other, independent sources. The price for incorporating this 

information is a crucial dependence on the availability, quality, and timely updates of 

underlying sequence and taxonomy databases. All phylogenetic methods share this same 

dependence, although it is often unrecognized. One advantage of the DarkHorse method 
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is that it combines the statistical power of thousands of database comparisons with a 

weighting scheme that maximizes the contribution of the broadest, most well-established 

classifications, and minimizes potential artifacts arising from fine-grained details that 

may be controversial or incorrect. This strategy provides a robust calculation of global 

lineage probabilities over an organism’s entire genome, even in the presence of minor 

database errors for individual sequences or species. It can also be useful in identifying 

database mistakes that need to be corrected, as shown by the vector contamination 

examples in Table 2.  

Some phylogenetic groups that undoubtedly participate in horizontal transfer, especially 

bacteriophages and other viruses, are not yet associated with sufficient taxonomy 

information to allow lineage analysis. False positive predictions of horizontal transfer 

may occur in cases of insufficient database coverage, where related species that contain 

orthologous proteins exist in real life, but are not included in the database at the time of 

analysis. Loss of individual genes in closely related species is also a potential problem, 

although mitigated by the thoroughness of the DarkHorse search algorithm, which 

incorporates data from all entries for all taxa in the database for every protein query.  

By design, the LPI ranking system is less sensitive to transfer between closely related 

organisms than more distant ones, and does not attempt to establish directionality of 

lateral transfer events. Ranking of horizontal transfer candidates in a genome is relative; 

no absolute cutoff thresholds for classification can be computationally justified in the 

absence of unambiguous, known, and generally accepted positive and negative examples. 

For these reasons, subsequent validation of horizontal transfer candidates by alternate 

methods is essential to ensure accuracy of final determinations. 
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The biology of lateral transfer between genomes is emerging as a highly complex 

process, with little or no opportunity to perform experimental validation of bioinformatic 

predictions. Addressing this complexity effectively requires the power of combining 

multiple analytical approaches. The toolbox of every researcher needs to include reliable 

methods for constructing phylogenetic trees at widely varying distances, identifying and 

comparing genomic signatures, determining gene location synteny between closely 

related species, and defining the environmental conditions and lifestyle opportunities that 

might allow lateral transfer to occur between individual organisms. 

The DarkHorse algorithm makes some unique contributions to the researcher’s toolbox, 

that are not provided by other techniques. LPI score distributions capture an important, 

potentially confounding piece of information that is neither collected nor recognized by 

other analytical methods, namely quantifying the density of current database coverage for 

potential relative organisms as a source of protein orthologs. The exceptionally rapid 

processing, screening and ranking of very large phylogenetic data sets in an automated 

manner makes it practical to analyze eukaryotic, as well as microbial genomes, and to 

perform repeated analyses as external databases are updated. Output from the program 

can then be used to select and prioritize candidates for follow-up with more detailed, 

sophisticated methods that would be too time consuming to apply to whole genomes in an 

ongoing, repeated basis. Finally, the DarkHorse program provides an exhaustive search 

function that can be used to identify orthologs from other species that may have been 

omitted or unknown at the time of previous analyses. This application permits quality 

assurance testing to be performed retrospectively on previous studies using any and all 
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other predictive methods, to ensure that their conclusions still remain valid after the 

expansion of our knowledge by the addition of new sequence data. 
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MATERIALS AND METHODS 

Genomes and Databases 

Predicted protein sequences for test genomes were downloaded from the NCBI Genbank 

genome website [45], with the exception of Dictyostelium discoideum, which was 

downloaded from dictyBase [46] and Arabidopsis thaliana, which was downloaded from 

The TIGR Arabidopsis thaliana Database [47]. Genbank protein sequences and their 

associated species information (the nr and taxdb databases) were obtained from the NCBI 

BLAST database [48]. NCBI taxonomy database tables were downloaded from the NCBI 

taxonomy database [49]. 

Software  

BLAST searches were performed using either the DeCypher Tera-BLAST™ 

(TimeLogic, Inc.) or NCBI BLAST program. Species names associated with BLAST 

matches were retrieved using the fastacmd module of the NCBI BLAST program. NCBI 

taxonomy data tables were entered into a local installation of the MySQL relational 

database program using a custom perl script. Lineages were retrieved for individual 

species using a recursive perl script that traversed the taxonomy tree through the database 

to its root level, producing output similar to lineage information available through the 

NCBI taxonomy website. Software to perform lineage probability index (LPI) 

calculations has been implemented as a perl-scripted pipeline for the UNIX operating 

system, with links to local hardware-accelerated BLAST search software and local 

MySQL databases. A more generalized integrated software interface is under 

development. 
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Computing Resources 

The rate-limiting step for the current procedure is a BLAST search of all predicted 

proteins from a test genome against the Genbank nr protein sequence database, collecting 

as many as 500 hits per query sequence. This step was performed using a DeCypher 

hardware-accelerated Tera-BLAST™ system, but could also be done using a 

multiprocessor cluster, or any other hardware configuration capable of acceptable 

BLAST performance with large data sets. With the DeCypher system, typical BLAST 

search times for a test set of 5000 predicted proteins against the Genbank nr database 

(currently 3.1 million sequences) were around 30 minutes. The remainder of the analysis 

can typically be completed in 10-60 minutes, depending on genome size, using a single 

CPU on a Sun V440 Unix workstation (1.3 GHz, 16 GB RAM). This stage requires no 

special hardware; most of the time is spent on SQL query retrieval from the MySQL 

relational database. 

Calculation of Lineage Probabilities 

The main steps of the overall algorithm are summarized in Figure 1, and described in the 

Results sections called "Algorithm Overview" and "Selection of candidate match sets". 

The steps used to calculate normalized, weighted, lineage probabilities are the same for 

both preliminary guide probabilities and final LPI scores. These steps are described in 

detail below, using the contents of Table 9 as an example. 

1) Determine the average hierarchical position of each lineage term. The numbers start 

at one, ordered from left to right, so that the most general term has the lowest number, 

and the most specific term has the highest number. In the Table 9 examples, the terms 

“Bacteria”, “Eukaryota” and “Viruses” are assigned to position one, “Actinobacteria”, 
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“Cyanobacteria”, “Dictyosteliida”, “Myxogastromycetidae” and ”Caudovirales” are 

assigned to position two, and so forth. 

2) Count the total number of entries for each hierarchical position in the whole set. 

Positions 1-3 in this example each contain six entries, because all six sequences on 

the list have at least three terms. Position 4 contains only two entries (from sequences 

number 3 and 5), and position 5 contains only one entry (“Nostoc”, from sequence 2). 

3) Determine the frequency (number of occurrences) for each individual term in the 

whole set. In this example, the term “Bacteria” has a frequency of 3, “Eukaryota” and 

“Cyanobacteria” each has a frequency of 2, and all of the other terms have a 

frequency of 1. 

4) Calculate raw probability by dividing term frequency by the total number of entries 

for the term's hierarchical position. The maximum possible probability for each 

lineage term is therefore 1.0. In this example, the raw probability for the term 

“Bacteria” is 3/6 (0.5). “Eukaryota” and “Cyanobacteria” both have a raw 

probabilities of 2/6 (0.33), and “Viruses” has a raw probability of 1/6 (0.17) . 

However, the term “Nostocaceae” has a raw probability of 1/2 (0.5), because there are 

only two possible terms at position 4. 

5) Divide each term's raw probability by its hierarchical position, to give a weighted 

probability value. This gives the highest weight to the most general terms . In this 

example, the term “Eukaryota” receives a weighted probability of 0.33/1 (0.33), but 

the weighted probability of “Cyanobacteria” is only 0.33/2 (0.16), because it is in the 

second hierarchical position. 



 

36 

6) For each unique lineage, add together the weighted probabilities of all component 

terms to calculate a composite probability. The composite probabilities of each of the 

example lineages are as follows: 

a) 0.44 + 0.09 + 0.06 = 0.59 

b) 0.44 + 0.14 + 0.06 + 0.08 + 0.20 = 0.92 

c) 0.44 + 0.14 + 0.06 + 0.08 = 0.72  

d) 0.33 + 0.09 + 0.06 = 0.48 

e) 0.33 + 0.09 + 0.06 + 0.08 = 0.56 

f) 0.22 + 0.09 + 0.06 = 0.37 

7) To account for lineages that have different numbers of terms, divide each composite 

probability by a length normalization factor, equal to the sum of reciprocal values for 

the number of composite terms it contains. As an example, for lineages with three 

terms, the length normalization factor is 1/1 + 1/2 + 1/3 = 1.83, so the final LPI score 

for lineage number 1 will be 0.59/1.83 = 0.37. For lineages with five terms, the length 

normalization factor is 1/1 + 1/2 + 1/3 + 1/4 + 1/5 = 2.28, so the final LPI score for 

lineage number 2 is 0.92/2.28 = 0.40. 

For a small minority of data points, species and/or lineage information may be absent 

from the database. These protein matches are excluded from lineage probability 

calculations, since they are not informative. In practice, these sequences will often be 

annotated as “uncultured bacterium” or “cloning vector”. These entries are flagged and 

saved to a log file, allowing the user to decide whether the taxonomy database needs to 

be to updated to a newer version, or the entries are insignificant and can be added to the 
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automatic exclusion list. Final output is formatted as a tab-delimited file, containing the 

following information: query id, total number of BLAST hits, number of non-self 

BLAST hits, number of candidate matches, initial tophit id, corrected best hit id, LPI 

score, percent identity of the BLAST match, query sequence length, alignment length, 

alignment coverage, e-value, bit score, taxonomy id, species, lineage, query annotation, 

and best match annotation. 

User-adjustable parameters  

Initial BLAST screening parameters against the sequence source database were chosen 

broadly, using an e-value cutoff of 1e-05 or better, with at least 60% of query length 

covered by the BLAST alignment. These parameters may be adjusted if desired by the 

user; they serve merely as a pre-filters to remove matches of obvious low quality. The 

maximum number of saved alignments per query was 500 sequences for the analyses 

presented here, but this number may need to be increased for very large genomes.  
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ADDITIONAL DATA FILES 

The following additional data are available with the online version of this paper. 

Additional data file 1 contains tab-delimited raw output from DarkHorse analysis of 

Escherichia coli strain K12, with a filter threshold setting of 10% and self definition set 

as "Escherichia". Additional data file 2 contains tab-delimited raw output for 

Thermoplasma acidophilum, with a filter threshold setting of zero and self definition set 

as "Thermoplasma". Additional data file 3 contains tab-delimited raw output for 

Thermotoga maritima, with a filter threshold setting of zero and self definition set as 

"Thermotoga". Additional data file 4 contains tab-delimited raw output for Entamoeba 

histolytica, with a filter threshold setting of zero and self definition set as "Entamoeba". 
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FIGURE LEGENDS 

Figure 1. Flow diagram illustrating DarkHorse work flow, with example numbers for 

Escherichia coli strain K12. Parallelograms indicate data, rectangles indicate processes. 

Parallelograms with dashed borders indicate intermediate data, output by one step and 

input to the next step. 

Figure 2. Effect of filter threshold setting on maximum number of candidate set members 

per query.  

Figure 3. Effect of expanding Escherichia coli self definition terms on LPI score 

distribution histograms. Filter threshold setting was 10%.  

Figure 4. Effect of expanding Arabidopsis thaliana self definition terms on LPI score 

distribution histograms. Filter threshold setting was 10%. 

Figure 5. LPI score distribution histogram for Thermoplasma acidophilum. Filter 

threshold setting was zero. 

Figure 6. LPI score distribution histogram for Thermotoga maritima. Filter threshold 

setting was zero. 

Figure 7. LPI score distribution histogram for Entamoeba histolytica. Filter threshold 

setting was zero. 
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TABLES AND CAPTIONS 

Table 1. Effect of filter threshold setting on best match lineages for E. coli. As discussed 

in the text, a zero percent filter threshold setting retains only candidates with bit scores 

equal to the top non-self blast match. A setting of 100% retains all matches as candidates 

for subsequent LPI calculations. Some columns have slightly lower total numbers due to 

matches with uncultured organisms, which contain no lineage information but were not 

filtered out in this experiment. 

 

 

Filter threshold setting 

 0% 2% 5% 10% 20% 30% 40% 60% 80% 100% 

Enterobacteria 4000 4034 4052 4063 4064 4078 4092 4105 4112 4112 

Other bacteria 132 112 103 96 85 74 76 64 58 58 

Phage 27 24 18 14 12 11 7 6 6 6 

Eukaryotes 8 6 6 6 4 4 4 4 3 3 

Archaea 0 0 0 0 0 0 0 0 0 0 

Total matches 4167 4176 4179 4179 4165 4167 4179 4179 4179 4179 
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Table 2. Effect of filter threshold setting and LPI score ranking on eukaryotic BLAST 

matches to E. coli. Rows in bold type contain the top ranked match using a zero threshold 

setting. Rows in italic type show cases where using a higher filter setting revealed an 

alternate match, with a higher LPI score, to the same genomic query. 

 

Filter 

thresh. 
Query id Match id LPI 

Pct 

ident. 

Query 

len. 

Align 

len. 

e- 

value 

Bit 

score 

Match 

species 
Query annotation Match annotation 

0.0 AAC74689 CAC43289 0.009 99 603 603 0 1261 
Arabidopsis 

thaliana 
beta-glucuronidase beta-glucuronidase 

0.02 AAC74689 ZP_00698534 0.981 99 603 603 0 1255 
Shigella 

boydii 
  

 beta-galactosidase/ 

beta-glucuronidase 

0.0 AAC76624 AAM52982 0.009 99 382 382 0 741 
Dunaliella 

bardawil 

mannitol-1-phosphate 

dehydrogenase 

mannitol-1-

phosphate 

dehydrogenase 

0.02 AAC76624 AAN45081.2 0.981 98 382 382 0 738 
Shigella 

flexneri 
  

mannitol-1-phosphate 

dehydrogenase 

0.0 AAC73440 AAU04862 0.001 96 427 425 0 830 
Tamarix 

chinensis 
cytosine deaminase cytosine deaminase 

0.2 AAC73440 AAV79026 0.925 81 427 420 0 706 
Salmonella 

enterica 
  cytosine deaminase 

0.0 AAC73353 AAA35359 0.088 78 155 99 
7.0E-

42 
171 

Cercopithecus 

aethiops 
CP4-6 prophage none 

0.2 AAC73353 ZP_00825492 0.924 48 155 145 
1.0E-

36 
153 

Yersinia 

mollaretii 
  hypothetical protein 

0.0 AAC75891 gi|2143952 0.108 85 458 441 0 719 
Rattus 

norvegicus 

predicted 

transcriptional 

regulator 

hepatic glutathione 

transporter 

0.8 AAC75891 AAD12579 0.927 28 458 403 
1.0E-

38 
164 

Salmonella 

typhimurium 
  HilA  

0.0 AAC73796 BAB33410 0.029 100 108 108 
1.0E-

54 
213 

Pisum 

sativum 

predicted inner 

membrane protein 

putative senescence-

associated protein 

0.0 AAC74583 BAE25662 0.104 92 1325 895 0 1614 
Mus 

musculus 
predicted lipoprotein none 

0.0 ABD18679 gi|1095170 0.108 93 234 179 
3.0E-

86 
320 

Rattus 

norvegicus 

predicted protein, N-

term fragment 

(pseudogene) 

glutathione 

transporter 
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Table 3. Effect of self-definition keywords on best match lineages for E. coli. Filter threshold 

setting was 10%. 

 

 Self-definition keywords 

  

K12 

83333 

316407 

562 

Escherichia 
Escherichia  

Shigella 

Escherichia  

Shigella  

Salmonella 

Enterobacteria 4203 4063 3640 3173 

Other bacteria 34 96 346 632 

Phage 1 14 55 80 

Eukaryotes 0 6 12 18 

Archaea 0 0 2 3 

Total matches 4243 4179 4055 3906 

LPImax 0.993 0.984 0.950 0.918 

LPImax matches 4110 3855 3220 2570 

LPImax lineage 

Bacteria; 

Proteobacteria; 

Gamma- 

proteobacteria; 

Enterobacteriales; 

Enterobacteriaceae; 

Escherichia 

Bacteria; 

Proteobacteria; 

Gamma- 

proteobacteria; 

Enterobacteriales; 

Enterobacteriaceae; 

Shigella 

Bacteria; 

Proteobacteria; 

Gamma- 

proteobacteria; 

Enterobacteriales; 

Enterobacteriaceae; 

Salmonella 

Bacteria; 

Proteobacteria; 

Gamma- 

proteobacteria; 

Enterobacteriales; 

Enterobacteriaceae; 

Yersinia 
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Table 4. Effect of self-definition keywords on LPI scores for individual protein examples 

from E. coli strain K12. 

 

   Self-definition keywords 

   

K12 

83333 

316407 

562 

  Escherichia   

Query ID 
Query 

annotation 
Query 

GC% 
Match 

species LPI 
e-

value 
Match 

species LPI 
e-

value 

AAC74994 
cytoplasmic 

alpha-amylase 
49 

Escherichia 

coli CFT073 
0.993 0 

Shigella 

dysenteriae 
0.984 0 

AAC75738 

carbon source 

regulatory 

protein 

49 
Escherichia 

coli O157:H7 
0.993 3e-26 

Shigella 

flexneri 
0.984 3e-25 

AAC75802 
conserved 

hypothetical 

protein 

43 

Geobacter 

sulfurreducens 
0.612 

3e-

138 

Geobacter 

sulfurreducens 
0.610 

3e-

138 

AAC75097 
UDP- 

galactopyranose 

mutase 

35 

Psychromonas 

ingrahamii 
0.747 

2e-

149 

Psychromonas 

ingrahamii 
0.743 

2e-

149 

AAC76015 
glycolate 

oxidase subunit, 

FAD-linked 

56 

Escherichia 

coli 53638 
0.993 0 

Pseudomonas 

syringae 
0.745 0 
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Table 5. Effect of self-definition terms on best match lineages for Arabidopsis thaliana. 

Filter threshold setting was 10%. 

 

 Self-definition keywords 

 Arabidopsis 
Arabidopsis 

Oryza 

Arabidopsis  

Oryza  

Brassica 

Viridiplantae 19229 12078 11658 

Other Eukaryotes 583 3122 3191 

Bacteria 162 812 850 

Archaea 3 12 13 

Viruses 1 2 3 

Total matches 19978 16026 15715 

LPImax 0.907 0.671 0.670 

LPImax matches 14215 2437 2960 

LPImax lineage 

Eukaryota; 

Viridiplantae; 

Streptophyta; 

Liliopsida; 

commelinids; 

Poales; 

Poaceae; 

Ehrhartoideae; 

Oryzeae; 

Oryza 

Eukaryota; 

Viridiplantae; 

Streptophyta; 

rosids; 

Brassicales; 

Brassicaceae; 

Brassica 

Eukaryota; 

Viridiplantae; 

Streptophyta; 

asterids; 

Solanales; 

Solanaceae; 

Solanum 
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Table 6. Effect of filter threshold on best match lineages for Thermoplasma acidophilum. 

As in Table 1 for E. coli, a zero percent filter threshold setting retains only candidates 

with bit scores equal to the top non-self blast match. A setting of 100% retains all 

matches as candidates for subsequent LPI calculations. Some columns have slightly 

lower total numbers due to matches with uncultured organisms, which contain no lineage 

information but were not filtered out in this experiment. 

 

 Filter threshold setting 

 0 2% 5% 10% 20% 40% 

Picrophilus  604 658 760 852 919 976 

Sulfolobus 106 104 81 76 50 40 

Other Archaea 483 437 373 302 267 236 

Bacteria 97 92 78 62 54 37 

Eukaryotes 4 3 3 3 5 6 

Total matches 1294 1294 1295 1295 1295 1295 
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Table 7. Effect of filter threshold setting on best match lineages for Thermotoga 

maritima. Some columns have slightly lower total numbers due to matches with 

uncultured organisms, which contain no lineage information but were not filtered out in 

this experiment. 

 Filter threshold setting 

 0 2% 5% 10% 20% 40% 

Clostridia 627 695 799 917 1064 1170 

Other Firmicutes 135 115 99 79 55 56 

Non-Firmicutes bacteria 458 422 364 300 229 170 

Archaea 208 197 172 139 89 46 

Eukaryotes 12 11 7 6 5 1 

Total matches 1440 1440 1441 1441 1442 1443 
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Table 8. Effect of filter threshold setting on best match lineages for Entamoeba 

histolytica. Some columns have slightly lower total numbers due to matches with 

uncultured organisms, which contain no lineage information but were not filtered out in 

this experiment. 

 

 Filter threshold setting 

 0% 2% 5% 10% 20% 40% 

Dictyostelium 694 831 1096 1485 1901 2083 

Other Eukaryotes 2353 2236 2011 1682 1347 1267 

Bacteria 433 431 413 377 308 213 

Archaea 72 61 50 35 22 11 

Total matches 3552 3559 3570 3579 3578 3574 
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Table 9. Examples of NCBI taxonomy lineages. 

 

Species 

Num. 

Terms Lineage 

Symbiobacterium 

thermophilum 
3 Bacteria;Actinobacteria;Symbiobacterium 

Nostoc 

punctiforme 
5 Bacteria;Cyanobacteria;Nostocales;Nostocaceae;Nostoc 

Trichodesmium 

erythraeum 
4 Bacteria;Cyanobacteria;Oscillatoriales;Trichodesmium 

Dictyostelium 

discoideum 
3 Eukaryota;Dictyosteliida;Dictyostelium 

Physarum 

polycephalum 
4 Eukaryota;Myxogastromycetidae;Physariida;Physarum 

Enterobacteria 

phage P1 
3 Viruses;Caudovirales;Myoviridae 
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