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ABSTRACT

Motivation: Phylogenomic approaches towards functional and

evolutionary annotation of unknown sequences have been sug-

gested to be superior to those based only on pairwise local

alignments. User-friendly software tools making the advantages of

phylogenetic annotation available for the ever widening range

of bioinformatically uninitiated biologists involved in genome/EST

annotation projects are, however, not available. We were particularly

confronted with this issue in the annotation of sequences from

different groups of complex algae originating from secondary

endosymbioses, where the identification of the phylogenetic origin

of genes is often more problematic than in taxa well represented in

the databases (e.g. animals, plants or fungi).

Results: We present a flexible pipeline with a user-friendly,

interactive graphical user interface running on desktop computers

that automatically performs a basic local alignment search tool

(BLAST) search of query sequences, selects a representative subset

of them, then creates a multiple alignment from the selected

sequences, and finally computes a phylogenetic tree. The pipeline,

named PhyloGena, uses public domain software for all standard

bioinformatics tasks (similarity search, multiple alignment, and

phylogenetic reconstruction). As the major technological innovation,

selection of a meaningful subset of BLAST hits was implemented

using logic programing, mimicing the selection procedure (BLAST

tables, multiple alignments and phylogenetic trees) are displayed

graphically, allowing the user to interact with the pipeline and

deduce the function and phylogenetic origin of the query. PhyloGena

thus makes phylogenomic annotation available also for those

biologists without access to large computing facilities and with

little informatics background. Although phylogenetic annotation is

particularly useful when working with composite genomes (e.g. from

complex algae), PhyloGena can be helpful in expressed sequence

tag and genome annotation also in other organisms.

Availability: PhyloGena (executables for LINUX and Windows 2000/

XP as well as source code) is available by anonymous ftp from http://

www.awi.de/en/phylogena

Contact: kvalentin@awi-bremerhaven.de

1 INTRODUCTION

Presently a lot of sequence information on genomes and

unknown gene sequences stemming from expressed sequence

tag (EST) libraries is being produced. A major problem in
processing these data is the correct identification of gene

function, i.e. the annotation. In some cases, e.g. for genes of

organelle origin or in complex algae (Valentin et al., 1992), the

determination of the phylogenetic affiliation of a given gene
may also be of interest. These questions are often addressed by

screening gene sequence databases for similar sequences using

pairwise local alignment algorithms, typically basic local

alignment search tool (BLAST) (Altschul et al., 1997). The
similarity of the unknown sequence to a known (i.e. already

annotated) one is expressed by a BLAST score, and the

statistical significance of the similarity by an e-value. A certain
threshold in either one of these indices (e.g. e-value �10�7 or

score480 for amino acid sequences) than is taken as evidence

for gene homology. Other features such as the presence of

functional domains can be used as additional criteria. Gene
identification is especially difficult with ESTs because they

frequently do not comprise the entire gene, the correct reading

frame may not be known and the sequence may contain non-
coding regions. Because there is no such thing as a universal

e-value limit implying that two sequences are necessarily

homologous, ideally the BLAST results should be judged by

experts, i.e. through expert manual annotation. As already
proposed by Eisen (1998), phylogenetic analyses comparing the

unknown sequence with potential homologs might improve

sequence based function predictions. In case the unknown gene
is a true homologue to already known genes, it should group

with them in a phylogenetic tree. However, such analyses

are very time-consuming and are therefore typically only

performed for a small subset of the genes/sequences, if at all.
Software pipelines automating the process of collecting

candidate homologs and preparing phylogenetic trees with
them for a large number of query sequences have been published

(‘PyPhy’: Sicheritz-Pontén and Andersson, 2001 and

‘Phylogenie’: Frickey and Lupas, 2004). Their major emphasis

lies in generating and testing phylogenomic hypotheses [phylo-
genetic relationships among bacterial or fungal genomes, or

screening a genome for proteins which are specifically related to

user-defined taxa (e.g. Huang et al., 2004)]. They are not easily*To whom correspondence should be addressed.
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accessible for bioinformatics-uninitiated biologist users or those

participating in genome or EST annotation consortia who need

to annotate many sequences. These pipelines (1) can only be

controlled from the command line on UNIX operating systems,

(2) they do not address the problem of intelligently selecting

a small, concise subset of BLAST hits for preparing meaningful

phylogenetic trees which can be interpreted by a biologist,

(3) do not present their results (BLAST-hits, multiple align-

ments, phylogenetic trees) in an intuititive and interactive

graphical display. To our knowledge there are three other tools

(‘PhyloBLAST’: Brinkman et al., 2001, ‘BIBI’: Devulder et al.,

2003, ‘galaxie’: Nilsson et al., 2004) also implementing a chain

of multiple sequence alignment (MSA) followed by a phyloge-

netic analysis. These tools are designed for interactive analysis

of single queries but cannot be used in a medium-throughput

manner to perform these analyses for a large number of queries.

Second, they do not implement an intelligent filtering of

BLAST hits before phylogentic analysis. In addition, the user

cannot chose between alternative analysis methods, except for

the neighbor joining and maximum parsimony method in

PhyloBLAST.
With these problems in mind, we developed a pipeline with

intelligent BLAST hit selection rules and interactive graphical

user interface for the automatic generation of phylogenetic trees

on a desktop computer. Our specific aim was to provide a user-

friendly tool to ease the annotation process for biologists, which

can be used as an interactive tool allowing to inspect all

intermediate results and which allows batch mode to analyze a

large amount of genes. The major motivation for establishing it

came from the analysis of complex genomes [algal genomes

originating from secondary endosymbioses (McFadden, 2001) in

particular], but the pipeline has the potential to become a useful

tool for functional annotation of genes and ESTs in general.
Unlike Phylogenie and PyPhy, our pipeline, PhyloGena, uses

a selection approach directly aimed at modeling the decision

of an expert annotator, considering both the quality and

the taxonomic and functional diversity of BLAST hits. The

selection module of PhyloGena is implemented using logic

programing, and it also provides the possibility for the user to

customize selection rules. The pipeline allows the user to plug

different custom databases and different multiple alignment

programs. Furthermore, PhyloGena has a user-friendly graph-

ical interface, making it a potentially useful annotation tool

also for occasional users or researchers with only basic

informatics know-how.

2 RESULTS

2.1 Process of genome annotation and phylogenetic

analysis

Genome projects typically include the following steps: (1) the

assembly of the genome sequence from many individual

sequencing runs, (2) the prediction of coding regions including

splicing sites in case of eukaryotic genes, (3) the assignment of

functional descriptions to the genes predicted and (4) the

reconstruction of metabolic and regulatory networks.

The most labor-intensive part of this process is step 3—the

functional annotation of each predicted gene. The functional

annotation of an open reading frame (ORF) is typically based
on extensive database searches for similar sequences and
functional domains. In most approaches this step is done by

BLAST searches which produce simple pair-wise alignments of
the query sequence against known database sequences. Good
alignments are recognized by a high BLAST score and a low

e-value, which are often seen to represent the likelihood that the
two compared genes are homologous. A common approach to
automated functional annotation is accordingly to presume

(implicitly) that the best BLAST hit (i.e. the sequence
producing the highest score/lowest e-value) is orthologous to
the unknown sequence. Although this might often be the case,

notably, the ordering of hits based on their BLAST scores/
e-values does not necessarily reflect the degree of evolutionary
relatedness of the hits with the query (Koski and Golding,

2001). The most important factors that can bias such results are
gene duplications/gene families (Wall et al., 2003), and the
incompleteness of sequence databases (especially of the
annotated ones).

A hypothetical scenario can demonstrate this: red algae and
cyanobacteria contain three different phycobiliproteins (PB)
with different functions, red phycoerythrin (PE), blue phyco-

cyanin (PC) and green allophycyanin (APC), all of which have
a common ancestor and display a high degree of similarity
(435% identity) among each other. Assume that there is a yet

unknown fourth class of PB’s for which a gene is analyzed by
a BLAST search. This gene would produce high scores
and highly significant e-values against known PB’s thus leading

to the wrong conclusion that it is either PE, PC or APC
depending on which PB produces the ‘best’ values.
The approach of phylogenetic annotation would consist of

selecting a (both phylogenetically and functionally) representa-
tive subset of the BLAST hits, and subjecting them to multiple
alignment and phylogenetic analysis. The structure of the

phylogenetic tree (the grouping of the new sequence outside the
three known functional PB clades) could reveal the mistake.
Whereas this approach could also simply be seen as a data

reduction technique useful for interpreting BLAST results, it is
conceptually much more, as it tries to reveal the evolutionary
history of the unknown ORF concerned and use the recon-

structed history as a basis for drawing conclusions about its
function.
However, such an analysis requires a number of steps

including (1) initial database comparisons, (2) most critical:
selection and retrieval of a ‘meaningful subset’ of sequences
found by these comparisons, (3) aligning these sequences

(4) construction of a phylogenetic tree from the alignment
and (5) judging the tree and the position of the query gene in
the tree. Carrying out such an analysis manually is time-

consuming and cannot be applied to entire genomes. Although
some software pipelines automating phylogenetic analyses have
already been introduced (Frickey and Lupas, 2004; Sicheritz-

Pontén and Andersson, 2001), our pipeline addresses two issues
not addressed by these. First, we put a strong emphasis upon
the selection of a meaningful subset of the BLAST results to be

included in the phylogenetic analysis by implementing an
extensible and customizable rule-based selection process using
logic programing. Second, the pipeline is provided with a user-

friendly graphical interface and runs on currently common
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desktop computers, making it also a potentially useful tool for
expert manual annotators working on genome/EST projects.

2.2 The pipeline

The core of the implemented system is a software pipeline that

carries out phylogenetic analysis on a per-ORF basis. Steps one

through four of the five steps mentioned earlier are fully
automated. The first step is a BLAST-search, resulting in a list

of putative homologs for the ORF in question. A local
installation of e.g. the SWISS-PROT database (Bairoch et al.,

2005) is searched using NCBI BLAST. Other databases can be
included. In the next step a subset of the BLAST hits is selected

for further analysis. This is the critical step in the analysis and
most of the work presented here was dedicated to this task.

Typically it is the one requiring expert knowledge on genes/
proteins and the phylogeny of the organisms from which the

BLAST hit stems. The criteria for this selection process are
represented as rules in a knowledge base (see subsequently) and

these ‘rule-based selection tools’ are the novel aspect in a
pipeline otherwise based on established software tools. Based

on the selected subset a multiple alignment is calculated using
software chosen by the user. Currently, interfaces to ClustalW

(Higgins et al., 1994; Lopez et al., 1997), T-Coffee (Notredame
et al., 2000), DIALIGN (Morgenstern, 2004), POA (Grasso

and Lee, 2004), Mafft (Katoh et al., 2005), MUSCLE (Edgar,
2004) and Kalign (Lassmann and Sonnhammer, 2005) are

implemented. Finally a phylogenetic tree is computed
and stored as the result of the analysis. Originally, interfaces

to Phylip (Felsenstein, 2004; http://evolution.genetics.
washington.edu/phylip.html) neighbor joining and maximum

likelihood were implemented in PhyloGena. Now also
Quicktree (Howe et al., 2002) and PhyML (Guindon and

Gascuel, 2003) can be used by PhyloGena, allowing the user to
relatively quickly obtain bootstrapped neighbor joining and/or

maximum likelihood trees.
The pipeline integrates these commonly used bioinformatics

tools in a flexible way and allows the user to plug in custom
sequence databases as well as alternative analysis tools

(e.g. multiple alignment programs).
The results (BLAST results, selected hits, multiple alignments

and phylogenetic trees) can be viewed interactively, i.e. the user

can change selection of BLAST hits, re-root trees, or export
multiple alignments for further analyses.

2.3 Rule-based sequence selection

By selection we refer to a function that determines a choice of
BLAST hits for every BLAST result.

Whereas BLAST may return hundreds of putative homologs,
common multiple alignment and phylogenetic inference meth-

ods are not capable of processing this amount of sequences
given the limited resources available on a desktop computer,

especially in a whole-genome scenario. Furthermore, phyloge-
netic trees comprising potentially hundreds of sequences (like

those produced by Phylogenie or PyPhy) are difficult to inter-
pret visually. Therefore a selection of a meaningful subset

of BLAST hits from the BLAST result is necessary for further
processing. This is the most critical step in our automated

phylogenetic analysis.

An obvious criterion for the selection of BLAST hits is the

quality of each hit, i.e. their similarity to the query (as expressed

by the coverage, percent identity or score) and the statistical

significance of this similarity (as expressed by the e-value).

Another criterion that applies is diversity. A sequence selection

for a phylogenetic tree should include representative samples

from a wide diversity of taxa. As stated in Köljalg et al. (2005)

the inclusion of too many identical sequences in a phylogenetic

analysis is likely to result in a tree with little, if any, resolution.

Such trees are generally considered unsafe for inferring sequence

relatedness. But the selection proposed for galaxieBLAST

(Nilsson et al., 2004) of the best three matches followed by

the next 12 matches of mutally distinct e-values is a simplistic

method and does not force the inclusion of taxa of interest.

To meet both criteria is often difficult to achieve, as an increase

in quality may lead to a decrease of diversity and vice versa.

Thus, the goal of the selection process is to find a balance

between quality of the BLAST hits (in terms of e-values) and

their representativeness concerning phylogenetic diversity.
The first step towards modeling the whole selection process is

modeling each of these two criteria individually. In the

following description we refer to them as ‘selection by quality’

and ‘selection by diversity’. Using these and some further basic

rules, complex selection rules can be described which were

based on the procedures applied by a human annotator.
The rules currently implemented in PhyloGena use the

taxonomic and functional classification from the UniProt data-

base. The functional classification is based on the UniProt IDs

(similarly to PyPhy, Sicheritz-Pontén and Andersson, 2001),

which reflect a hierarchical grouping of proteins/protein

families.

In the pipeline there are four selection rules implemented

among which the user may choose:

Rule 1—Selection of k best BLAST hits. This represents

‘selection by quality’ in its pure form. It simply means

selecting the best k hits based on their e-values. It may be used

in cases when only a quick overview is necessary on the

relationships of e.g. the best 5–50 BLAST hits to the query.

Rule 2—Selection of k BLAST hits from each taxon to a user-

defined depth. This mainly diversity-based option choses a

user-defined number of BLAST hits from each taxon to a

user-defined depth, e.g. domain, kingdom or class level.

It guarantees maximal phylogenetic diversity of hits with the

potential danger of selecting too many hits in case many

taxa produce hits. Also hits of poor quality may be chosen.

It should only be applied to small numbers of queries.

Rule 3—Taxa tree selection with autodepth. This rule is a

specialization of case 2 and determines the maximal phyloge-

netic depth automatically with respect to the user-defined

number of hits per taxon and a given maximum number of hits

to be selected.

Rule 4—Intelligent branching. This is the most sophisticated

selection rule combining the quality-based and diversity-based

selection rules and searching for optimal parameter settings.

In order to implement these four selection rules the following

underlying functions were definied.

PhyloGena—phylogenetic annotation
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2.3.1 Selection in general

Let R denote the result set with a finite number of BLAST hits

then a selection s is a function sm:R!H, H�R which

determines a finite subset of hits H using a selection method m.

2.3.2 Selection by quality

Selection by quality is modeled using a relation O which defines

a total order on set R. The selection function stop of the k best

hits (absolute or relative) with respect to relation O is then
defined as: stop(k,O)(R):¼ {x | x2H^ y2R^ y 62H¼) xOy and

|stop(k,O)|� k}.
This rule 1 is available in PhyloGena as ‘Select top x

sequences (by e-value)’.

2.3.3 Selection by diversity

Selection by diversity aims to achieve a subset of BLAST hits
with a high level of diversity. Diversity can refer to different

attributes of a hit, for example diversity with regard to the

species or with regard to the gene family.
For example, consider this simple case of selection by

diversity: ‘Select five hits from each taxonomic kingdom’.

Generally spoken selection by diversity is a selection function
that relates to an attribute of BLAST hits (like kingdom, gene

family, etc.), divides the BLAST result into disjoint subsets

using this attribute and selects a user-defined number of hits
from each.

Let DA denote the domain of attribute A consisting of all

possible values of attribute A and dA:R!DA is a function
determining the value of attribute A for each BLAST

hit. Then we define a function kA which selects all hits

from the result set R having value v for attribute A:
kA(R, v):¼ {x | x2R^ dA(x)¼ v}. Selection by diversity is then

defined by the function sdiv applying the quality selection in

order to restrict the maximal number taken from each taxon to

k hits:

sdivðA, vÞðRÞ :¼
[

v2DA
stopðk,OÞðkAðR, vÞÞ

This simple approach (rule 2—available as ‘Select x sequences

from every taxon’ in PhyloGena) leads to problems in certain

cases, as the resulting number of hits may vary widely
depending on the amount of diversity already present in the

BLAST result. If we apply the previous example to a BLAST

result which contains only hits from one class, we will get at

most five hits. But if hits from five different classes are present
in the BLAST result, we may end up with up to 25 hits. This

large discrepancy is problematic, as one of our initial

motivations was to limit the amount of BLAST hits. The

solution is to utilize the fact that taxonomic annotation of
sequences is organized in a hierarchical manner. Each level of

the taxonomic hierarchy is regarded as an attribute of a BLAST

hit. If we choose the highest available classification rank in the

taxonomy (the domain) as our attribute, we get a limited
number of results as there are at most three different domains.

But as we choose lower classification ranks like class or family,

the number of hits potentially increases.
Let A denote the set of all attributes A and t:N!A a

function determining the attribute A on level l2N then

function stax(l,k)(R):¼ sdiv(t(l), k)(R) selects the best k hits from

each group on taxonomic level l. In order to determine the

lowest taxonomic level l that complies with a given limit of max

BLAST hits the function stax is embedded in a top-down search

strategy. This selection rule 3 is available in PhyloGena as

‘Taxa tree selection with auto depth’.

2.3.4 Combined selection: intelligent branching

As stated earlier, the goal of the selection process is to find

a subset of BLAST hits balancing between quality and diversity

and a size not exceeding a given maximum number. In the

selection rule 4—‘Intelligent branching’, different combinations

of selection by quality and selection by diversity are applied

successively on the result set to achieve a good, representative

selection, depending on the character of the BLAST result.

In order to avoid a too strong restriction of the result set, an

automatic adjustment of the parameter settings is carried out.

After each selection step, the number of selected hits is checked

if it is smaller than the maximum allowed. If so, the last

selection step is repeated with a relaxed parameter setting until

a result set with size very close to the maximum is found.
The standard case consists of three selection functions: at

first, selection by diversity with regard to the gene family is

performed. Then selection by diversity with regard to the

species is applied to the result and after that selection by

quality. For three different special situations this standard case

is modified:

Large result If the BLAST result is large (e.g. more than
100 hits), there is an additional selection by quality at the

beginning of the process. This helps to limit the following

selection by diversity to focus on the upper quality range.

High quality hits If there is a large number of high quality
hits in the BLAST result (e.g. more than 100 hits in the upper

quality range), only those hits are used for the selection process,

as the presence of a large number of very high scoring hits

renders the rest meaningless.

Heterogeneous hits If the hits in the upper quality range are

dominated by only a few gene families, there is a high

probability that the query ORF is related to one of these

gene families (or to a gene family not represented in the

database). Any hits that have a low quality and are not related

to any of these families are therefore filtered out.

We have modeled the expert knowledge about sequence

selection and other aspects of the phylogenetic analysis process

in a rule-based knowledge base. There is a standard selection

process, which is parameterized and modified by the rules

depending on the BLAST result at hand. The rules base their

decisions on information concerning the ORF itself, the

statistics about the BLAST hits as provided by BLAST

output and information about the proteins related to the

BLAST hits gathered from SWISS-PROT. The knowledge base

also contains means for user communication: each rule may

expose user-configurable parameters and the overall decision

process is documented in a log file that may be examined after

the analysis is done.
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2.4 System architecture

The system was implemented as a stand-alone prototype with

the intention of integrating it into existing genome annotation

systems in the future. The main goal of the system architecture

was to achieve a high level of flexibility. To accomplish this

goal the system was divided in a number of distinct modules,

grouped in three layers: the user layer, the application layer and

the resource layer (see Figure 1). This design allows for a

painless change of the system’s front- or backend, making it

easier to integrate the pipeline into a larger system or to set it up

as a web service.
At present the pipeline is embedded in a stand-alone

application featuring a graphical user interface and a simple

file-system backend. The user may import and export nucleic

acid or amino acid sequences, trigger single or batch analysis

and view visualizations of the generated alignments and

phylogenetic trees (Fig. 2).

The resource layer contains three modules. The module

‘retrieval’ is responsible for the integration of sequence

databases. Currently, SWISS-PROT formatted flat file data-

bases (SWISS-PROT, TREMBL) are fully integrated into the

pipeline. Simple FASTA formatted databases can also be used;

however, only without the selection rules requiring taxonomic

and functional information. The module ‘interface’ provides an

abstraction layer for carrying out homolog searches, multiple

alignments and phylogenetic tree inference. Currently there are

drivers available for command-line BLAST as a homolog

search tool, Clustal W (Higgins et al., 1994), DIALIGN

(Morgenstern, 1999), Mafft (Katoh et al., 2005), MUSCLE

(Edgar, 2004), Kalign (Lassmann and Sonnhammer, 2005), and

POA (Grasso and Lee, 2004) as multiple alignment tools

and PHYLIP (Felsenstein, 2004), Quicktree (Howe et al., 2002),

and PhyML (Guindon and Gascuel, 2003) as phylogenetic

inference software. Finally the module ‘persistence’ serves as an

interface to the backend, providing capabilities to store and

retrieve data model objects.

2.5 Implementation

Most of the system is implemented in Java, except for the

knowledge base, which is written in Prolog. This allows a

descriptive definition of the selection rules, which can be easily

interpreted by an end user. More importantly, this knowledge

base can be modified or extended by the user without

recompiling the entire program.
TuProlog (Denti et al., 2001), a Java-based Prolog interpreter

was used as an inference engine. A special extension library for

tuProlog was written that serves as a bridge from Prolog to the

Java-based functionality, while a special wrapper class provides

access to Prolog rules from Java. A central data model contains

all domain-specific information and is accessible from Java as

well as from Prolog.
The implementation makes heavy use of BioJava (www.

biojava.org), whose facilities were used to create database and

external software integration. For visualization purposes two

stand-alone applications were linked into the GUI: ATV

(version 1.92; Zmasek and Eddy, 2001) as a tree viewer and

JalView (version 1.7.5b; Clamp et al., 2004) as an alignment

viewer.

3 EVALUATION

Three kinds of experiments were conducted: one aiming to

evaluate the systems ability concerning functional prediction,

one concerning the inference of phylogenetic origin and one to

assess the influence of the multiple alignment method used.

For these experiments ORFs were randomly chosen from

the Thalossiosira pseudonana (Armbrust et al., 2004) genome

database and from an EST data set of Emiliania huxleyi (Kegel

and Valentin, unpublished). The diatom and haptophyte data

sets were chosen because both algal groups (1) root deeply in

the tree of life (Baldauf, 2003), (2) originate from a secondary

endosymbiosis event (thereby containing a composite genome,

parts of which originate from different organismal groups) and

(3) are poorly represented in gene databases. Therefore, their

genes are more difficult to annotate than e.g. typical animal or

higher plant genes.

Our tests concentrated on two major aspects. The first was

functional annotation: were the phylogenies produced by

PhyloGena consistent with the functions assigned to these

ORFs by the human annotators (based mainly on BLAST

and InterPro search results)? The second is what we refer to as

‘phylogenetic annotation’: did the phylogenies produced by

PhyloGena suggest the same phylogenetic origin for these

ORFs as their best BLAST hits?

Although phylogenetic analysis makes a more complete use

of information available than simple pair-wise comparisons,Fig. 1. System architecture with user, application and resource layer.
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phylogenetic trees can also be erroneous, e.g. because of long

branch attraction or genome compositional bias. Sequences

where phylogenetic and BLAST-based annotations are incon-

sistent deserve further attention.
In a fourth experiment, in order to be able to present the

differences of PhyloGena from other previously published

phylogenomic tools, we ran the 42 sequences from the first

experiment (Thalassiosira test data set) through the Phylogenie

pipeline (PyPhy was not available anymore at the time of these

tests, so we were unable to perform a comparison with it). We

describe the differences in the usage and output of Phylogenie

and PhyloGena with special reference to the task of annotation

of unknown sequences.
Executables used for the evaluation were: NCBI BLAST

v2.2.8, ClustalW v1.83, DIALIGN v2.2.1, POA v2 and Phylip

v3.65.

3.1 Function prediction

As a test case, 42 ORFs with specific annotations from the

Thalossiosira pseudonana (Armbrust et al., 2004) genome

database were used (see supplementary material). For each

ORF the system generated a phylogenetic tree (sequence

selection was performed by ‘Intelligent branching’, alignments

were calculated using ClustalW, trees were calculated using

PHYLIP neighbor joining with JTT distances; these settings

also apply to the following experiments, unless otherwise

stated). All trees are available from the authors. Each tree was

then manually examined and classified into one of three

categories, ranging from ‘correct’ or ‘almost certain’ for

phylogenetic trees from which the putative function of the

ORF could be reliably inferred (i.e. query sequence part of a

group with a known function) to ‘uncertain’ for trees which did

not allow a reliable annotation (query outside of groups with a

known function, i.e. not related to a known function). Out of 42

sequences of the annotations based on the trees in the test 32

(79%) were classified as ‘correct’ or ‘almost certain’, while 9

sequences (21%) of the annotations received the classification

‘uncertain’. In other words, annotation mainly based on

BLAST searches can produce up to one-fifth false or uncertain

identifications, which may equal hundreds of misidentified
genes for genome projects of species from taxa not well
represented in the databases (e.g. protists). These figures show

the potential of the system for function prediction.

3.2 Inference of phylogenetic origin

In this experiment, the knowledge-based selection rule 4
(‘intelligent branching’) was contrasted with the trivial selection

rule 1 based on best e-values. Both methods selected a fixed
number of BLAST hits from a BLAST result, but while the

knowledge-based selection employed the rule-based approach
described earlier, the trivial selection method simply selected
the best BLAST hits judging by e-value. For each generated

phylogenetic tree, the number of alternative taxa was counted
on each level of the taxonomic tree. The total number of

different taxa included in the phylogenetic tree was used as a
measure of it’s degree of differentiation.
ORFs were chosen that had a high number of BLAST hits in

a single gene family. For each ORF, phylogenetic trees
generated using both selection methods were evaluated using
these measures. The knowledge-based approach achieved better

results in 8 of 13 cases and in the other five cases, no difference
was measurable. Figure 3 shows an example of two trees for the

gene gapc_achlya, generated with the trivial and the knowledge-
based selection. The trivial tree is dominated by the taxa
Nematoda and Chordata, while other taxa are underrepre-

sented. As a result, no inference is possible concerning
the phylogenetic origin of the ORF. The tree that stems

from rule-based selection features a more even distribution
of taxa. The ORF is associated with a group of eukaryotic
sequences.

3.3 EST test data sets

In a second experiment the pipeline was tested using EST
sequences from an alga, Emilinia huxleyi (Kegel and Valentin,
unpublished). Emilinia huxleyi belongs to the Haptophyta,

complex algae which root deeply in the universal tree

Fig. 2. A screen shot of PhyloGena showing selected BLAST hits for further analysis.
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(Baldauf, 2003) resulting in EST sequences not easy to

annotate. From 400 available sequences, 50 finding BLAST

hits in Uniprot/SwissProt with e-values 510�7 were selected

and analyzed with PhyloGena using the same setting as above.

We compared function prediction taken simply from the best

BLAST hit and function prediction based on grouping in a tree

by manually inspecting every tree. In this data set 20% of the

functional prediction based on BLAST proved to be uncertain.

This implies that in now common large EST projects of tens of

thousands of ESTs approximately hundreds of ESTs may be

falsely identified. Subsequent conclusions on gene expression

patterns based on misidentified ESTs then also may be wrong.
A second question we addressed concerned the phylogenetic

origin of ESTs, an issue that may be important in complex

algae. We compared the phylogenetic affiliation of the best

BLAST hit with the corresponding nearest neighbor in the tree.

Only in 40% of the cases both were identical at the class level,

assuming that phylogenetic analyses are more reliable in

identifying the nearest phylogenetic neighbor of a sequence

than simple BLAST searches (as they seem to be, see Koski and

Golding 2001), conclusions on phylogenetic origin of genes

from complex algae simply based on the best BLAST hit are

highly unreliable.

3.4 Influence of alignment methods

The aim of this experiment was to assess the influence that

different alignment methods, in particular ones using a global

versus a local approach to alignment, have on the quality of the

generated phylogenetic tree. The rationale behind was that

sequence similarity between divergent proteins is sometimes

only significant locally, not throughout the whole length of the

proteins. Two major reasons for this can be modular domain

architecture or simply large divergence leading to substitution

saturation outside conserved functional domains. Whereas

ClustalW and most other multiple alignment programs try

to align sequences in their whole length, local approaches to

multiple alignments (ones that only attempt to align regions of

strong similarity) might produce more accurate results in such

cases. To test the effect of local versus global alignment

algorithms upon the topology of phylogenetic trees, two

programs implementing local multiple alignment algorithms,

POA (Grasso and Lee, 2004) and DIALIGN (Morgenstern,

2004) were compared with ClustalW. A set of 21 randomly

chosen ORFs where used as test data. For each ORF and each

of the three alignment tools (POA, DIALIGN and ClustalW)

a tree was generated. The three trees of each ORF were

manually compared concerning their placement of the ORF

relative to the other sequences. While there were in some cases

minor differences in the topology of the trees, no case was

found in which these differences altered the overall statement

with regard to the function or the origin of the ORF.

3.5 Results regarding runtime

PhyloGena is aimed to be also suitable for medium-throughput

analyses, i.e. analyzing hundreds of ORFs in batch mode.

Therfore, along with the measurement of quality, a comparison

of runtime was conducted for the three multiple alignment

methods. To examine the runtime, tests were conducted on

A B

Fig. 3. Phylogenetic tree (a) with trivial selection—rule 1—and (b) with knowledge-based selection—rule 4. The analyzed ORF is marked as

‘QUERY’.
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a 1400MHz AMD system with 512 MB RAM running Linux.

Using 21 randomly selected ORFs, test runs were carried out

for each of the three supported alignment tools and for a

number of 20, 30 and 40 selected BLAST hits. Runtimes were

measured for the BLAST search, the selection of BLAST hits

and the calculation of multiple alignment and phylogenetic tree.

The results can be seen in Figure 4. While DIALIGN v2.2.1

needed a lot of CPU time, POA v2 and ClustalW v1.83 both

proved to be relatively speedy methods.

3.6 Comparison with Phylogenie

The major difference between Phylogenie and PhyloGena is

that whereas the first one aims at being a tool for comparative

analyses of the set of phylogenetic trees for a given genome,

PhyloGena aims explicitly at being a sequence annotation tool.

First, the trees produced by Phylogenie arrive in text files

(Newick standard format) and their visualization requires

external phylogenetic tree drawing tools, whereas PhyloGena

presents the user an interactive graphical view of the trees.

Second, trees produced by Phylogenie do not present functional

information, which makes the resulting phylogenies hardly

useful as an annotation help. Third, the size of the trees

(number of terminal nodes) produced by Phylogenie using

default settings strongly depends on the input sequence (in our

42 ORF data set, the number of terminal taxa ranged from 21

to 314; see Supplementary material for some examples). In the

case of PhyloGena, the user can choose the upper limit of tree

size, and the selection rules take care for losing minimal

relevant information by selecting a subset of large data sets.

A basic usage difference is that while Phylogenie is a command-

line driven pipeline, requiring at least some familiarity with

UNIX and command line tools, PhyloGena presents an

intuitive graphical user interface. This does not only allow an

easier handling, but also makes an integrated overview of

results (BLAST hits selected, multiple alignments, phylogenetic

trees) and also separate, even manual control of the different

steps of the analyses possible.

4 CONCLUSIONS AND OUTLOOK

We established a pipeline for the automatic phylogenetic

analysis of unknown genes which will facilitate the use of

a phylogenomic approach in sequence annotation. The pipeline

starts with a BLAST search for any imported sequence.

An automated, knowledge-based selection of a ‘meaningful

subset’ of hits from the BLAST search was developed. Different

methods for multiple alignments were tested and it was found

that the alignment method has little influence upon the

conclusions drawn from the trees. Test runs of the pipeline

with annotated data sets were performed to demonstrate some

of the potential improvements in sequence annotation through

using phylogenetic analyses. Our results imply that this

approach has the potential to improve the annotation of

hundreds of sequences in now common large EST or genome

projects.
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