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Coevolution of gene families in prokaryotes
Otto X. Cordero,1 Berend Snel, and Paulien Hogeweg
Theoretical Biology and Bioinformatics, University of Utrecht, 3584 CH Utrecht, The Netherlands

We study gene family coevolution on a tree of life based on a large-scale ancestral gene content reconstruction,
which includes gene duplication and deletion events. The insights obtained from this study are threefold: (1) Global
properties, such as the distribution of coevolution partners and the formation of disconnected clusters of coevolving
families, can be an inevitable consequence of evolution along a tree. (2) Concerted family expansion (gene
duplication) and contraction (gene deletion) reflect functional constraints and therefore lead to better function
prediction. (3) “Long-range” coevolutionary relationships, caused mostly by large family expansions or contractions,
reveal high-level evolutionary organization of cellular processes in prokaryotes.

[Supplemental material is available online at www.genome.org.]

Coevolution can be seen as the interdependency between evolu-
tionary histories. In the context of genome evolution, when we
consider gene families as evolutionary units, we expect those
families that take part in the same complex, pathway, or process
to show a nonzero correlation of their histories. This means that
inferring coevolutionary relationships should help not only to
predict new direct interactions but also to elucidate the con-
certed evolution of gene content as reflected by “long-range”
interdependencies between families occurring in different but
related pathways or processes.

To infer a map of coevolutionary relationships, we compare
the reconstructed evolutionary histories of gene families along a
tree of life. Similar approaches have been applied in automated
function prediction (Vert 2002; Barker and Pagel 2005; Gabaldon
and Huynen 2005; Barker et al. 2007), showing that the results
obtained from correlating the process of losses and gains (de
novo creation of a gene or horizontal gene transfer) along a tree
of life improve those of standard phylogenetic profiles, based on
correlating presence–absence patterns across species.

Our work is based on a full-parsimony reconstruction,
which in addition to losses and gains of gene families also in-
cludes deletions and duplications of their genes. We thereby ob-
tain a more complete description of a gene family’s evolutionary
history. Here we show that the inclusion of gene duplication and
deletion events improves the prediction of functional relation-
ships. This means that patterns of gene family expansion and
contraction reflect functional dependencies, just like gains and
losses have been shown to do.

Previous studies of large-scale evolution of gene families
have shown that only small fragments of cellular pathways are
coinherited in evolution (Glazko and Mushegian 2004). Here we
analyze coevolution between pathways and the global organiza-
tion that emerges from those interactions.

Results

Making a coevolution map

We measure coevolution based on two alternative codings,
a quantitative measure, in which the actual number of du-

plications and deletions are taken into account, and a binary
measure, in which only the sign of the change is used. In both
cases the scores are calculated for all pairs of gene families. Given
the 4595 COGs with at least one representative in our 163 pro-
karyotic species, we calculate 1.05 � 107 ([45952 � 4595]/2)
scores.

For the quantitative coevolutionary score, we calculate the
correlation of changes along the tree (see Methods). As Figure 1A
shows, the distribution of simple Pearson correlations looks un-
expectedly bimodal, with a large peak at zero and another smaller
peak close to 0.1. We correct this by calculating partial correla-
tions relative to the vector of total changes in genome size per
branch (see Methods). As can be seen in Figure 1A, this corrects
the shape of the distribution and centers it around zero. This
shows that the bimodality seen with simple Pearson correlations
is caused by the force of genome expansion and contraction, i.e.,
large genome expansions or contractions produce concerted
events that affect the observed correlations. Notice that partial
correlation makes a difference, especially for low correlation val-
ues. This is also the case for the function prediction benchmark,
which will be discussed later in this article.

For the binary coevolutionary score, we take into account
only the sign of the change in family size. The score equals the
number of branches where both family sizes increase (+, +) or
decrease (�, �), minus those in which the change is not con-
certed: (+, �), (�, +), (+, 0), (0, +), (�, 0), (0, �). This means that
the score is limited by the number of events in the history. This
score is the same as used previously for gain–loss reconstructions
(Gabaldon and Huynen 2005; Barker et al. 2007) but applied on
data including duplications and deletions (see Supplementary
material S3–S4 for an extensive discussion about the score and
other alternatives).

Coevolution map topology is an emergent property
of evolution

We studied the topological properties of the coevolution map
and tried to understand the observed features from an evolution-
ary point of view. Networks of coevolving families are built by
considering all pairs of families with a minimum coevolutionary
score. Figure 1B shows that the coevolution network is a discon-
nected graph formed by separate clusters. As this cutoff is de-
creased, new clusters start to appear, reaching a maximum be-
tween partial correlation 0.6 and 0.725 (sign scores 0 and 1). After
this the cluster starts to percolate into a connected component.
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As for the degree distribution, we find that it is best described by
a power law with exponential cutoff (see Supplementary material
S6).

We study the extent to which these global network proper-
ties can be explained as side effects of the mutational dynamics
of genomes. To this end, we make use of null models based on a
simulation of genome evolution (see Methods). The simulation is
based on the fact that, given the reconstructed history, we can
replay evolution stochastically under different constraints. We
use two different models: In the first, more stringent model, we
keep the same number of duplications and deletions (including
losses) per branch and reproduce gains exactly as they appear on
the reconstruction. That is to say, we only simulate the occur-
rence of each duplication and deletion on a given branch by
assuming that the chance an event happens on a family is simply
proportional to its size. Although the resulting coevolution map
conveys almost no functional information (at its best, only four
links coincide with data from KEGG), the degree of distribution
reflects closely that of the real coevolution map (Fig. 2). On the
other hand, the clustering behavior is at most about two-thirds of
the number of clusters seen in the data. This means that func-

tional constraints increase the clustering of coevolutionary inter-
actions.

A second, less stringent null model, only maintains the total
number of events inferred by the reconstruction. In this model,
all families are present at the root of the tree of life, so no gain
occurs during the simulation. The number of events is equally
divided among all branches where duplications or deletions oc-
cur with equal chance. Hence, resemblance with the real recon-
structed process is only on the fact that the same tree is used.
Surprisingly, even for these extremely unrealistic assumptions,
we observe that the degree of distribution of the coevolution map
with a similar number of edges (at a lower threshold) still re-
sembles the class of distribution found in the data (both for simu-
lation and reconstruction of simulation). Notice that the same
process on a star tree produces a truly random graph with a Pois-
son degree distribution, since the probability of finding a high
correlation between two vectors that share no common history
decreases exponentially. On the other extreme, without specia-
tion (one descendant per ancestor) the degree of distribution
becomes degenerate as a result of fast family extinctions. This
shows that global connectivity properties can be explained by

the dynamics of the duplication–
deletion process on a tree. The specific
connections do, however, bear func-
tional significance.

Gene family expansions and contractions
reflect functional dependencies

In this section we wish to obtain a mea-
sure of “correctness” for the predicted
coevolutionary relationships, which al-
low us to compare the results from the
gain–loss and full reconstructions as well
as our two different scoring methods.
We do this by measuring the overlap be-
tween coevolution and known func-
tional interactions as contained in the
KEGG database (see Methods). If the
inferred coevolutionary link overlaps
with one inferred from KEGG, the pre-
diction is labeled as a “true positive”

Figure 1. Distribution of correlations and global network properties. (A) Distributions of correlation values. We see that Pearson correlations are
bimodally distributed, with a peak at zero and otherwise a bell-shaped distribution centered at the right side of zero. The partial correlation corrects this
and centers the distribution around zero, showing that spurious correlations occur as a result of genome expansions and contractions. The inset shows
the distribution in log scale. (B) Clustering behavior for partial correlations (pcor) and sign score (sign)-based networks, where clusters are simply
connected components of size �2. (C) Degree distributions for different thresholds. For the thresholds shown here, the best fit is given by a power law
with exponential cutoff (see Supplementary material S6).

Figure 2. Global properties of the coevolution map. (A,B) Similar degree distributions as seen in the
data can be obtained for simulations of genome evolution, even for the most relaxed conditions, when
only the number of events and the tree structure is maintained (low resemblance). In the high resem-
blance case, the simulation shows similar clustering behavior at a lower level (C), while the low
resemblance simulation has almost no connections for high correlations and therefore no clustering.
The compared networks were selected for having similar numbers of edges.
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(TP). Otherwise, it represents an inter-
pathway interaction between COGs, i.e.,
a “false positive” (FP) according to the
KEGG definition of pathways.

We applied both our quantitative
and sign-based scores on the gain–loss
reconstruction data and full reconstruc-
tion data. Figure 3, A and B, shows that
the coevolution map built from the full
reconstruction predicts known interac-
tions better than the gain–loss recon-
struction. This holds for both the quan-
titative and nonquantitative scores used
in this paper. The prediction perfor-
mance for the full reconstruction im-
proves mainly because of two reasons:
(1) Concerted gene duplication and de-
letion allow better discrimination of TPs
from FPs, which means that family ex-
pansions and contractions do reflect
functional constraints. (2) Presence–
absence reconstructions or phylogenetic
profiles fail when gene families have few
losses or gains, since spurious scores are
produced when only few events are
shared. In contrast, completion of the
evolutionary history by inclusion of du-
plication and deletion events helps to
distinguish these cases from long peri-
ods of simultaneous family size conser-
vation that do reflect positive coevolu-
tion.

The sign score does better than the
quantitative one, in particular because
the former reaches a high percentage of
true positives while the partial correla-
tion remains bounded at ∼80%. Figure
3C shows a comparison of both scoring
methods. We see that there are many
pairs of families for which there is a low
correspondence between the quantita-
tive and the nonquantitative scores. We
have found that these discrepancies are
caused mainly by the occurrence of large
duplication or deletion events: A high
sign score can result in a low partial cor-
relation when a large family expansion
or contraction in one family does not
occur in the other. Conversely, when
the large expansion or contraction occurs in both families at the
same branch, a high partial correlation could be paired with a
low sign score, since the size of the event is invisible for the latter.
This analysis allows us to filter our different classes of coevolu-
tionary relationships. In the rest of this paper, we will focus on
those cases in which the quantitative data produces a new co-
evolutionary prediction, that is to say, when fast family expan-
sions or contractions co-occur.

Major cases of coevolution

We have manually surveyed our coevolution map in the regions
where high partial correlations (�0.7) are paired with low sign

scores. We find not only that these discrepancies are caused by
large family expansions and contractions but also that “false
positives” have in many cases a biological interpretation in terms
of “long-range” interactions.

Most of these cases are seen in the cluster of ATP-binding-
cassette (ABC) transporters, one of the largest and most ancient
families of genes (Locher et al. 2002; Locher 2004; Dawson and
Locher 2006). It is in fact the largest group of paralogs in bacteria
and Archaea (Tatusov et al. 1997). The map of ABC transporters
reflects coevolution according to the type of transported sub-
strate (Fig. 4A). More specifically, at partial correlation �0.7 we
observe six groups containing interpathway links corresponding
to different substrates. Moreover, some of these links reflect co-

Figure 3. Function prediction with full and gain–loss reconstructions. (A) Accuracy vs. coverage plot
shows the number of TP that can be obtained in relationship to the accuracy of the predictions,
TP/(TP + FP). (B) ROC (receiver operating characteristics) curve shows the trade off between the
false-negative and false-positive rates. The Y-axis can be interpreted as sensitivity, or the ratio of TP to
all links that should have been predicted. The X-axis is 1 � specificity, where specificity measures the
ratio of true negatives (TN) with respect to all links that are not present in KEGG. Both plots show that
the full reconstruction method with partial correlations is a better predictor. (C) Relationship between
scores as a smoothed 2D histogram of COG pairs. We see that the scores differ the most when one of
the COGs in the predicted link contains a large expansion or contraction.
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evolution between transporters and families involved in metabo-
lism of the transported substrates. For example, COG0687,
a periplasmic polyamine (spermidine/putrescine) transport
component coevolves with COG0665, a deaminating oxidore-
ductase family. In Escherichia coli, one of the members of the
oxidoreductase family, PuuB, is involved in the putrescine utili-
zation pathway (Kurihara et al. 2005), while PotF, a member of
the periplasmic component family, binds to putrescine to allow
its import to the cell (Pistocchi et al. 1993). See Supplemental
Figure S7 for a detailed representation of the evolution of ABC
transporter families.

TonB-dependent outer membrane receptors, involved in
transport of cobalamin iron siderophore complexes and colicins,
have recently been found to scavenge sucrose in Xanthomonas
campestris. This is proposed to play an important role in the ad-
aptation of phytopathogenic bacteria to host plants as well as in
the uptake of plant-derived polysaccharides in aquatic bacteria
(Blanvillain et al. 2007). In accordance with this view, we observe
coevolution of two TonB family receptor families, COG4206 and
COG4771, with a number of other families involved in metabo-
lism of different types of saccharides. Moreover, these metabolic
families coevolve as well with endopolygalacturonase
(COG5434), a wall-degrading enzyme produced by plant patho-
gens (Collmer and Keen 1986).

In all these cases, coevolution is strongly determined by a
few concerted massive duplications or deletions rather than by

many small events. The same explanation holds for true positives
predicted by partial correlation but not predicted by the sign
score.

Another interesting case of coevolution is found between
the different “systems” involved in different stages of informa-
tion processing, from DNA replication and RNA polymerization
to protein synthesis. Figure 4B shows three independently co-
evolving clusters of ribosomal proteins corresponding each to
archaeal–eukaryotic (AE), bacterial–eukaryotic (BE), and univer-
sal (U) families. A group of proteins, outside the protein-synthesis
pathway, coevolves with AE-specific ribosomal proteins. In these
groups, we find subunits of AE DNA-directed RNA polymerase as
well as subunits of the AE-specific DNA replication machinery.
On the other hand, the U and BE protein synthesis machinery is
linked to a number of transcription initiation factors. Other fami-
lies, like prefoldins and RNA binding proteins, which are in-
volved at different stages of post-translational and post-
transcriptional control, are found in the part of the coevolution
map that contains COGs not present in KEGG pathways (not
shown in Fig. 4).

The evolution of information-processing systems is marked
by strong conservation, which means that the number of events
from which we can infer coevolution is minimal. However, given
that our reconstruction allows for the complete description of
the evolutionary history, the simultaneous conservation of fam-
ily size is in this case the information used to infer coevolution.

Figure 4. Coevolution of ABC transporter (A) and information processing (B) families. Gray lines correspond to the KEGG-based COG network
constructed from genes, i.e., a link is colored gray when both COGs have a gene in the same pathway. In panel A the large cluster corresponds to the
general KEGG group of ABC transporters, while the ribosome is shown in panel B. Links colored in orange are TP, i.e., links that are both in the KEGG-based
COG network and in the coevolution map. Green links are false positives, links that are only in our coevolution map.
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Structure of cellular organization as revealed by coevolution

Most true positives are links between COGs that fall in the same
functional category. At ∼50% accuracy ((TP/TP+FP)), 80% of the
TP are within category links (>90% for accuracies �70%). This
can be observed in the over-representation of self-loops in Figure
5, which provides a more global view of the coevolutionary in-
teractions, depicting relationships between COG functional cat-
egories rather than between COGs (see Methods). On the other
hand, false positives (at least 75% intercategory links) reveal a
distributed structure corresponding to the organization of cell
processes as revealed by the intercategory links in Figure 5. This
shows that false positives are not just missed true positives or
prediction mistakes but that they have a different structure cor-
responding to a higher-level organization.

Figure 5 also shows that those false positives resulting from
the match of a few large expansions or contractions, as detected
by the partial correlation score, help to create a more complete
image of long-range interactions between cellular pathways, re-
vealing an evolutionary module around carbohydrate metabo-
lism and pinning signal transduction families as central role
players in evolution.

Discussion

We have seen that considering the full description of a gene
family’s history in terms of gain, deletion, and duplication events
increases the extent to which coevolution reflects functional in-
teractions in prokaryotes. This holds for both our quantitative
and nonquantitative scoring schemes. By comparing the predic-
tions made by these two methods, we have shown that large
expansions and contractions reflect interpathway coevolution.
Our results also show that the sign score, and in particular our
extended version that includes duplication and deletion events,
produces the best function prediction results.

We should keep in mind that only a small fraction of the
families show high scores: less than half of all the COGs show a

correlation �0.6. About 50% of these high coevolutionary score
values are predicted as well by the STRING (Von Mering et al.
2003) gene neighborhood score, which suggests that about half
of the detected coevolutionary relationships coincide with a
physical linkage in the chromosome.

Global topology properties of the coevolution map arise
neutrally (without intervention of selection) as a result of the
dynamics of family expansion and contraction on a tree. Our
simulated genome evolution results in distributions of coevolu-
tion partners, which resembles the data closely; however, the
coevolution interactions rendered by the simulation have no
functional value. This is in line with the idea that such global
properties are more universal than functional content (Wolf et al.
2002) and that they may come about as a result of the evolution-
ary dynamics (Koonin et al. 2002), as seen in the cases of family
size distribution (Karev et al. 2002) and transcription and coex-
pression network structure (Van Noort et al. 2004; Cordero and
Hogeweg 2006).

On the interaction scale, the study of coevolution via ex-
pansions and contractions along a tree of life allows us to look at
functional interactions. In this article we have paid special atten-
tion to well-conserved groups of families that evolve under large
expansions and contractions. One such group is transcription
regulation. In recent work, we have pointed out that large ex-
pansions of contractions of regulatory families occur at the onset
of major prokaryotic lineages (Cordero and Hogeweg 2007). It is,
however, unknown what the functional role of those dramatic
changes is on regulome size. Our coevolution map reveals that
expansions of LysR and TetR families of regulators (the largest
and second-largest families of transcription factors in prokary-
otes) correlate with expansions of efflux systems such as the
threonine/LysE-like transporters, drug/metabolite transporter
(DMT) (Jack et al. 2001), and resistance-nodulation-division
(RND) (Tseng et al. 1999) multidrug efflux families. This suggests
that large duplications of regulators could be related to the sens-
ing and subsequent export of metabolites and toxins.

More generally speaking, the coevolution map and the

Figure 5. Network of coevolutionary relationships between functional categories. Links are P = 0.05 significant coevolutionary relationships between
COG functional categories. Significance is calculated in relationship to an ensemble of 2500 randomized coevolutionary maps (see Methods). The
colored lines correspond to links found only with partial correlation and not with sign score. The rest of the links are found both by sign and partial
correlation scores. Dotted circles enclose information processing and carbohydrate metabolism modules. Most of the underlying coevolutionary
relationships relate to the cases shown in Fig. 4, e.g., antimicrobial peptides (defense mechanisms) and uncharacterized signal transduction families,
TonB outer membrane receptors (ion transport), and metabolism of sugars, etc.

Coevolution of gene families in prokaryotes

Genome Research 5
www.genome.org

 Cold Spring Harbor Laboratory Press on January 30, 2008 - Published by www.genome.orgDownloaded from 

http://www.genome.org
http://www.cshlpress.com


analysis of functional categories show that FP are not only just
missed interactions or prediction mistakes but interpathway
links that help us reveal the global structure of long-range inter-
actions between cellular processes.

As the number of well-sequenced eukaryotic species in-
creases, the question of to what extent gene duplication reflects
functional interaction in eukaryotes as well could be addressed in
more detail.

Methods

Maximum parsimony reconstruction
The reconstruction of ancestral gene content is performed per
family with maximum parsimony, i.e., finding the evolutionary
scenario that renders the least number of (weighted) events. This
is done by minimizing the cost function S = � + �d + �g, where �

is the number of deletions, d the number of duplications, � the
duplication cost, g the number of gains, and � the gain cost (see
Mirkin et al. 2003 for related methods). This is implemented as
an extension of the PAUP generalized parsimony algorithm
(Swofford 1998; Mirkin et al. 2003). The algorithm proceeds in
two steps: (1) Given a family species distribution, it calculates all
possible paths that connect the family sizes on the leaves (spe-
cies) of the tree down to the root (last common ancestor), passing
through all intermediate ancestor sizes. (2) Starting from the
root, the path that minimizes the cost function is selected. Our
reports refer to � = 2 and � = 3 (see Supplementary material S1 for
more information on the algorithm, and Supplementary material
S3 for an extensive discussion about the use of other gain costs).

As a definition of gene family, we use the COG database
(Tatusov et al. 2000) as defined in STRING, v6.3 (Von Mering et
al. 2003), on 163 prokaryotic species, which leaves 4595 non-
empty COGs to work with. As a tree of life we use a recently
published tree (Ciccarelli et al. 2006), rooted between archaea–
eukarya and eubacteria and pruned down to our 163 species. An
outlier leaf, which contains “1” when the family is present in
eukaryotes and a “0” otherwise, was added to distinguish king-
dom specificity.

Calculating scores
For a given COG, its reconstructed history is represented as a
vector where each entry contains the signed difference in COG
size between the descendant and ancestor of a branch. Pearson
correlations between reconstructed history vectors of COGs X
and Y are defined as �XY = (1/N)(∑(X � X)(Y � Y)/�X�Y), where
X and Y are the corresponding average values, �X and �Y are the
standard deviations, and N is the number of branches in the tree.
Partial correlations are calculated with respect to the vector of
total changes in genome size, G. Each element, gi, of this vector
is calculated per branch, i, as the sum of all changes in COG size,
�, i.e., gi = ∑j�(i,j), where j is an index that runs over all COGs.
The partial correlation is calculated then as �XY/G = (�XY �

�XG�YG/√(1 � �XG)(1 � �YG)).
To calculate the sign score, we consider only branches in

which Xi or Yi	0. The score equals the number of cases in which
sign(Xi) = sign(Yi) minus the rest.

Benchmarking
To benchmark our results, we constructed a network of COG
interactions based on the KEGG v41.1 database (Kanehisa and
Goto 2000). To do this, we use KO (Kanehisa et al. 2004) entries
in KEGG. The KEGG-based COG network is constructed by es-
tablishing a link between two COGs when their corresponding

KOs participate in the same pathway. Alternatively, one can
build the COG network directly from the co-occurrence of COG
members in KEGG pathways, which results in larger coverage of
COGs by the addition of less “significant” links (1933 COGs and
78,874 links). To estimate false positives, we refer only to the
subset of COGs and COG interactions that are contained in the
network; i.e., links between COGs outside the KEGG-based COG
network are not counted as false positives. The benchmarking
results reported in Figure 3 refer to the KO-based network, while,
for its larger coverage, the gene-based network is used to color
links in Figure 4. See Supplemental Fig. S6 for the benchmarking
results on the gene-based network, and Supplementary material
S7 for more details on the methods.

Genome evolution simulation
We simulate genome evolution by reproducing the reconstructed
number of duplication and deletion events stochastically. We do
this in the following way: On each branch of the tree we repro-
duce N = � + d events, where � is the number of deletions on the
branch and d the number of duplications on the branch. Assume
the ancestor on a branch has G genes. For each event until reach-
ing N, we chose a random COG, of size x, with probability equal
to x/G, and update the COG size as x = x + 1 with probability d/N
or as x = x � 1 otherwise. This is done starting from the first
ancestor until reaching the leaves.

For our null models, we have implemented this in two ways:
A stringent model where gains and COG deletions are not simu-
lated but added exactly as they are found in the data. The num-
ber of per-branch duplications, d, and deletions, �, as well as the
COG sizes in the last common ancestor are taken directly from
the reconstruction. Another less stringent alternative is imple-
mented by performing the same number of events per branch
with equal chance of a duplication or a deletion and all families
being present in the last common ancestor, so no gain occurs.
Using the simulation result or its reconstruction yields the same
result in our analysis, which shows that the global topological
properties of the coevolution map are not an artifact of parsi-
mony.

Functional category network
Given two functional categories, the statistical significance of
intercategory coevolution is calculated by comparison with 2500
randomized coevolution maps, keeping the degree per COG. The
results shown in Figure 5 refer to a P-value of 0.05, i.e., 125 out of
the 2500 cases show equal or higher numbers of links between
the two categories.
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