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Summary

•Module networks are probabilistic graphical models to infer transcription regulatory networks from
gene expression data (Segal E, et al.: Nat Genet 2003, 34:166):

– genes are grouped in modules = groups of genes sharing the same parents and conditional distri-
butions in the model.

– regulators are arranged in regulation trees = conditional distributions are decision trees, testing
up/down regulation of a parent at each node, with Gaussian distributions at the leaves.

•We have introduced a new learning method which decouples module discovery from regulation
tree learning (Michoel T, et al.: BMC Bioinformatics 2007 8 (Suppl 2): S5).

•Validation of heuristic optimization algorithms on synthetic data generated by SynTReN (Van den
Bulcke T, et al.: BMC Bioinformatics 2006, 7:43) shows high FP rate for all methods (Michoel T, et al.:
BMC Bioinformatics 2007 8 (Suppl 2): S5).

•We have extended our method and introduced a new probabilistic model which allows efficient
sampling of module networks (Michoel T, et al.: in preparation).

• Statistical analysis of overrepresented edges in the network ensemble significantly improves TP rate
of inferred regulatory interactions (Michoel T, et al.: in preparation).

Software

• LeMoNe v1: Java package for learning module networks using deterministic optimization and
bottom-up learning of regulation trees (released under GPL).

• LeMoNe v2: Java package for learning module networks ensembles using Gibbs sampling and fuzzy
decision trees (to be released).

• GaneSh: Java package for model based coclustering of genes and conditions using Gibbs sampling
(released under GPL).

All software can be downloaded from our website:
http://bioinformatics.psb.ugent.be/software

Probabilistic model
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• Introduction of hidden variables decouples module learning from parent learning.

•Module learning + EM on hidden variables = coclustering of genes and conditions.

• Sampling from posterior distribution = Gibbs sampling of coclusters + direct sampling of regulators for given coclusters.

Gibbs sampler for coclustering genes and conditions
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Figure 1: Correlation coefficient between two dif-
ferent Gibbs sampler runs for a small data set
(top) and a large data set (bottom).
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Figure 2: Correlation coefficient between differ-
ent averages of the same number of local maxima
for a data set with 1000 genes, 173 conditions.

•We use a Gibbs sampler which iteratively updates the assignment of genes to clusters, and within
each gene cluster the assignment of conditions to condition clusters. The number of clusters is
determined by the algorithm.

• For large data sets (> 1000 genes, > 100 conditions) the Gibbs sampler gets stuck in local maxima
which partially overlap (Figure 1). The number of distinct local maxima is limited (Figure 2).

• The posterior distribution can be summarized as a set of fuzzy, overlapping clusters.

(Joshi A, et al.: submitted)

Sampling of regulators for given coclusters

0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
−2000

−1500

−1000

−500

0

500

1000

Average prediction probability

M
od

el
 v

s.
 r

an
do

m
 d

is
tr

ib
ut

io
n

Figure 3: Histogram of the average probability
that a regulator predicts the correct decision node
direction, for samples from the model (red) and
random samples (blue) (Gasch AP, et al.: Mol Biol
Cell (2000), 11: 4241) data set).

Figure 4: Regulation program learned from
(Gasch AP, et al.: Mol Biol Cell (2000), 11: 4241)
data set.

•Given a set of coclusters and values of the hidden variables, regulators can be sampled from the
posterior distribution for each decision tree node.

• Prediction probability of regulators can be used to prioritize high-scoring regulators, or suggest
missing regulators where only low-scoring ones are found (Figure 3, 4).

Module networks ensemble analysis

Figure 5: Highest weight network edges (SynTReN
data)

•Construct weighted transcription regulatory network from the ensemble by drawing edges from each regula-
tor to all the genes in that module; the weight is the prediction probability and weights for different module
networks are added together.

•With high threshold on weight, network motifs (Shen-Orr SS, et al.: Nat Genet (2002), 31:64) appear (Figure 5).

•Analysis of

– synthetic data generated by SynTReN (Van den Bulcke T, et al.: BMC Bioinformatics 2006, 7:43) (1000 nodes,
2361 edges),

– public E. coli expression data compendium (Faith JJ, et al.: PLoS Biology (2007), 5:0054) with RegulonDB
(Salgado H, et al.: Nucleic Acids Res (2006), 34: D394) as reference set of interactions,

shows that interactions with higher weight have significantly higher TP rate (Figure 6). 0 0.1 0.2 0.3 0.4 0.5 0.6
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Figure 6: Recall – precision for different cutoffs on
edge weights (SynTReN data)

(Michoel T, et al.: in preparation)


