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Gene co-expression, in many cases, implies the presence

of a functional linkage between genes. Co-expression

analysis has uncovered gene regulatory mechanisms in

model organisms such as Escherichia coli and yeast.

Recently, accumulation of Arabidopsis microarray data has

facilitated a genome-wide inspection of gene co-expression

profiles in this model plant. An approach using network

analysis has provided an intuitive way to represent complex

co-expression patterns between many genes. Co-expression

network analysis has enabled us to extract modules, or groups

of tightly co-expressed genes, associated with biological

processes. Furthermore, integrated analysis of gene expres-

sion and metabolite accumulation has allowed us to hypothe-

size the functions of genes associated with specific metabolic

processes. Co-expression network analysis is a powerful

approach for data-driven hypothesis construction and gene

prioritization, and provides novel insights into the system-level

understanding of plant cellular processes.
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Introduction

Accumulation of genome-wide gene expression data

has allowed biologists to investigate gene regulatory

mechanisms using systems biological approaches. Recent

developments in microarray technologies and bioinfor-

matics have synergistically driven the progress of this

field. With the accumulation of Arabidopsis gene expression

data, the systems biological approach can now be applied to

this model plant. The central concept of this approach is

to depict organizational and functional relationships of the

component molecules. Network analysis enables this as it

conceptually represents the relationships between compo-

nents by a network.

In many cases, a coordinated behavior of gene

expression across a variety of experimental conditions

indicates the presence of functional linkages between

genes. For example, it has been demonstrated that the

expression of genes associated with the same metabolic

function is likely to show co-expression patterns (Ihmels

et al. 2004, Kharchenko et al. 2005). An increasing number

of studies have supported the versatility of co-expression

analysis for inferring gene functions, although it has been

recognized that co-expression does not necessarily mean a

regulatory relationship (Stuart et al. 2003). In co-expression

analysis, similarity of gene expression profiles is

measured using correlation coefficients or any other

distance measures. If the correlation between two genes is

above a given threshold, the genes can be connected

together to generate a network. A co-expression network

thus illustrates correlation patterns between genes, and so

represents the complexity of a cellular transcriptional

network.

Analyses of cellular networks have revealed unforeseen

similarities to non-biological complex network systems,

including the Internet and society (Watts and Strogatz 1998,

Barabasi and Albert 1999, Milo et al. 2002). One important

finding is that a gene co-expression network has the

universal topological features of complex network systems

characterized by modularity, presence of hub and power-

law degree distribution (Jeong et al. 2000, Jeong et al. 2001,

Featherstone and Broadie 2002). However, although the

recognition of such similarity to other complex systems has

accelerated the understanding of the global topology of

cellular networks, the global topology itself has revealed

little about the regulatory mechanisms of specific biological

processes. To obtain practical information for tackling

biological problems associated with specific processes, it is

necessary to focus more on the smaller architecture of the

co-expression network.
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In this mini review, we present an overview of recent

efforts in the field of plant biology to elucidate gene

regulatory mechanisms using co-expression analysis. First,

we briefly introduce the cellular network architecture,

network substructures, general strategies of co-expression

analysis and public co-expression databases. Next, we

summarize recent results of co-expression analysis and

integrated co-expression analysis combining transcriptome

and metabolome data. Finally, the limitations and

future perspectives of co-expression network analysis are

discussed. This mini review mainly focuses on co-expression

networks. Readers should refer to other reviews for

understanding general aspects of network biology

(Barabasi and Oltvai 2004) and gene expression data

analysis (Allison et al. 2006).

Terminology

The term ‘co-expression’ refers to a similarity of gene

expression patterns across a variety of experimental

conditions. The term ‘network’ is widely used in many

fields of science. For example, in plant molecular genetics,

a directed network is frequently used to illustrate positive

and negative regulatory relationships between genes.

Here, we refer to a network as an undirected graph

composed of nodes and links representing genes and

mutual co-expression relationships, respectively. The term

‘topology’ refers to patterns of node-to-node connectivity,

or configuration of links.

Network architecture

The complexity of biological networks has a hierarchy

(Oltvai and Barabasi 2002). Between the levels of genome-

wide organization and individual molecular components

(Fig. 1A), there are substructures such as modules

(Rives and Galitski 2003), motifs (Milo et al. 2002) and

pathways, characterized by topological properties such as

degree distribution (Barabasi and Albert 1999), network

density (Barnes 1969) and clustering coefficient (Watts and

Strogatz 1998). Definitions of these concepts are summar-

ized in Fig. 1B. There is particular interest in identifying

topological modules. Given that most biological functions

cannot be attributed to a single gene, a module is likely

to represent a set of genes having a discrete function that

arises from interactions among them (Hartwell et al. 1999).

Conversely, the analysis of local modules may be more

informative with respect to the regulatory mechanisms

of the specific biological processes. Therefore, the identifi-

cation of the modular structure is a primary goal in

co-expression network analysis.
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Fig. 1 Network architecture. (A) Hierarchical structure of
cellular networks. From the top to the bottom, structures associate
more closely with local and specific cellular processes. The
concept of this illustration is adopted from Oltvai and Barabasi
(2002) with permission. (B) Definitions of terms describing
networks.
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Protocol for co-expression network analysis

Fig. 2 illustrates practical protocols of co-expression

network analysis, where strategies are conceptually classified

into two categories. The first category uses a ‘guide-gene’

approach (Fig. 2, left). Prior to correlation coefficient

analysis, an appropriate set of genes relating to the biological

problem is selected based on experimental knowledge and

literature information. The pre-selected set of genes are

termed ‘guide genes’ (Lisso et al. 2005) or ‘bait genes’ (Wei

et al. 2006). Here, we use the term ‘guide genes’, as the term

‘bait gene’ may cause confusion with the alternative meaning

used in a molecular biological context referring to a yeast

two-hybrid system. In the first round of co-expression

analysis, correlation coefficients between the guide genes

(guide genes 1) are retrieved from a correlation coefficient

data set calculated from gene expression data (e.g. micro-

array). The visualization of co-expression using a network

viewer such as that of Pajek (http://vlado.fmf.uni-lj.si/pub/

networks/pajek/) (Batagelj and Mrvar, 2003) or BioLayout

(http://www.biolayout.org/) (Enright and Ouzounis 2001)

provides an intuitive grasp of co-expression modules. In this

step, finding co-expression modules within the guide genes,

as well as correlation between the guide genes and all other

genes, is expected. A set of correlated genes found in the first

round of analysis can be combined with another set of guide

genes (guide genes 2), and the combination used as the guide

genes in the second round of analysis. In summary, using a

guide-gene approach, one can expect to find genes that

directly or indirectly correlate with the genes of interest.

To demonstrate the guide-gene protocol, we show

an example of our analysis on genes associated with

the phenylpropanoid biosynthesis pathway. We selected

‘flavonoid biosynthesis’ genes and ‘cinnamate–monolignol

pathway/sinapoyl ester biosynthesis’ genes from the

pathway viewer KaPPA-View (http://kpv.kazusa.or.jp/

kappa-view/, genes in pathway maps Ath00061 and

Ath00064, respectively) (Tokimatsu et al. 2005) as guide

genes 1 (Fig. 3A). To investigate co-expression patterns

within guide genes 1, we searched the co-expression database

ATTED-II (see next section) for pair-wise Pearson correla-

tion coefficients (PCCs) using a PCC cut-off threshold of 0.6,

and visualized the resulting co-expression network using

Pajek. This first round of analysis revealed that the guide

genes were classified into four distinct co-expressionmodules

(Fig. 3B).Most of the genes inmodules 1, 2 and 3 belonged to

the flavonoid biosynthesis pathway (Ath00061). On the

other hand, genes in module 4 belonged to the cinnamate–

monolignol pathway (Ath00064). This result suggested that

expression of flavonoid biosynthesis and cinnamate–mono-

lignol pathway genes is differentially coordinated to produce

pathway-specific metabolites. Next, to investigate the

relationship between the phenylpropanoid pathway and

metabolically upstream pathways, the genes in the four

modules were combined with guide genes 2 containing

‘aromatic amino acid biosynthesis’ genes, ‘Calvin cycle’

genes and ‘pentose phosphate pathway’ genes taken from

KaPPA-View (genes in pathway maps Ath00017, Ath00112

and 0001, respectively). We again searched ATTED-II

for pair-wise PCCs using a cut-off threshold of 0.6. This

second round of analysis revealed that two genes in the

aromatic amino acid biosynthesis pathway (Ath00017),

the 5-enolpyruvylshikimate-3-phosphate synthase gene

(EPSP synthase) and the 3-deoxy-D-arabino-heptulosonate

7-phosphate synthase gene (DAHP synthase), were

Module within
guide genes

+
Guide genes 2

Fig. 2 Practical protocols of co-expression analysis. Left: guide-
gene approach, in which co-expression profiles between and
within selected guide genes are first investigated. Right: non-
targeted approach, in which the modular structure is extracted from
the entire network according to the topology of the links.
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co-expressed with cinnamate–monolignol pathway genes in

module 4 (Fig. 3C). These genes did not have co-expression

links with modules containing flavonoid biosynthesis genes.

The result suggested the hypothesis that aromatic amino acid

biosynthesis is more tightly coordinated with the cinnamate–

monolignol pathway than with flavonoid biosynthesis. In

addition, it suggested that EPSP synthase and DAHP

synthase could be regulatory points to control metabolic

flow from sugar phosphate to monolignol.

The other category uses a ‘non-targeted’ approach

(Fig. 2, right). In this approach, a knowledge-independent

module search of the entire network is performed based on

the topology of the network. ‘Module’ can be defined as

a group of densely connected nodes that have a sparsely
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Fig. 3 Example of co-expression analysis using the guide-gene approach. (A) To analyze phenylpropanoid pathway genes, genes
involved in flavonoid biosynthesis (KaPPA-View map number Ath00061) and cinnamate–monolignol pathway/sinapoyl ester biosynthesis
(KaPPA-View map number Ath00064) were selected as guide genes 1. To investigate the relationship between the phenylpropanoid
pathway and upstream pathways, genes involved in aromatic amino acid biosynthesis (KaPPA-View map number Ath00017), the Calvin
cycle (KaPPA-View map number Ath00112) and the pentose phosphate pathway (KaPPA-View map number 0001) were selected as guide
genes 2. (B) Co-expression network of guide genes 1 (phenylpropanoid pathway genes). Most of the genes in modules 1, 2 and 3 were
involved in flavonoid biosynthesis (Ath00061). All genes in module 4 were involved in the cinnamate–monolignol pathway (Ath00064).
CCoAOMT, cafferoyl-CoA 3-O-methyltransferase; 4CL, 4-coumarate-CoA ligase; DFR, dihydroflavonol 4-reductase; F3H, flavanone
3-hydroxylase; CHI, chalcone isomerase; CHS, chalcone synthase; F30H, flavonoid 30-hydroxylase; FLS, flavonol synthase;
CCR, cinnamoyl-CoA reductase; C3H, coumarate 3-hydroxylase; C4H, cinnamate 4-hydroxylase; AtOMT1, Arabidopsis thaliana
O-methyltransferase 1; PAL, phenylalanine ammonia-lyase; HCT, hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransfer-
ase. (C) Upstream pathway genes co-expressed with cinnamate–monolignol pathway genes. Co-expression of two genes involved in
aromatic amino acid biosynthesis (Ath00017) with cinnamate–monolignol pathway (Ath00064) genes in module 4 was found using guide
genes 2. EPSP synthase, 5-enolpyruvylshikimate-3-phosphate synthase; DAHP synthase, 3-deoxy-D-arabino-heptulosonate 7-phosphate
synthase. (D) A drawback of the guide-gene approach. A module found by this approach (circles and lines in the black broken circle) may
be a part of a larger and more densely connected module (gray circles and gray lines).
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connected periphery. Several algorithms have been pro-

posed to extract such groups computationally, which will

be reviewed in a later section.

Because the guide-gene approach allows moderately

sized analyses compared with the computationally-intensive

non-target approach, it is appropriate for gene prioritiza-

tion in a single-investigator study. However, we note a

pitfall of this approach. As the guide-gene approach uses

a pre-selected gene set, it cannot exclude the possibility that

an expression module found by this approach may be part

of a larger and more densely connected module (Fig. 3D).

It is important to test whether connectivity within the

module is higher than that to the outside. Practically,

and most simply, this test can be done by searching the

co-expression links of the module-member genes against

all genes.

After finding the co-expression module(s) using either

approach, the validity of the modules is evaluated by

statistical tests based on random resampling (Lisso et al.

2005, Wei et al. 2006) or permutation (shuffling of the data

to create pseudo data sets) (Stuart et al. 2003), and the

results are interpreted using biological knowledge such as

annotation and pathway information. Finally, generation

of an appropriate hypothesis is expected to result from the

co-expression network analysis. Here, we emphasize that

the use of co-expression network analysis is an efficient way

to develop a hypothesis, but not to prove that hypothesis.

Co-expression does not necessarily indicate a direct

regulatory relationship. Therefore, the hypothesis derived

from the analysis needs experimental verification to ensure

that the observed co-expression is biologically relevant.

Arabidopsis co-expression databases

Researchers can calculate gene-to-gene correlation

coefficients using their own expression data sets.

Alternatively, researchers can retrieve correlation coeffi-

cient data from public databases (Table 1). These databases

provide results of large-scale correlation coefficient calcula-

tions using expression data from various experimental

conditions (ranging from 123 to 2,620 arrays) deposited

by international microarray consortiums such as

AtGenExpress (Mirror site in Japan, http://pfg.psc.

riken.jp/AtGenExpress/links.html), NASCArray (http://

affymetrix.arabidopsis.info/) (Craigon et al. 2004), Gene

Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo/)

(Edgar et al. 2002) and ArrayExpress (http://www.ebi.

ac.uk/arrayexpress/) (Brazma et al. 2003). At present

(December 2006), all the databases in Table 1 accept

single-gene queries for a correlation coefficient search.

AthCoR@CSB.DB (http://csbdb.mpimp-golm.mpg.de)

(Steinhauser et al. 2004) and ATTED-II

Table 1 Public databases of Arabidopsis gene co-expression

Website Reference Descriptiona

Arabidopsis Coexpression Data

Mining Tool

(http://www.arabidopsis.leeds.

ac.uk/act/)

Jen et al. (2006) 443 arrays, single-gene correlation coefficient

query, expression pattern displayer, cis-element

analyzer, ID/function linker tool for Affymetrix

array, etc

AthCoR@CSB.DB

(http://csbdb.mpimp-golm.mpg.de)

Steinhauser et al.

(2004)

123 arrays, multiple-gene correlation coefficient

query, Spearman’s Rho rank, Kendall’s

coefficient of rank, Pearson’s linear product–

moment; multiple output mode, etc.

ATTED-II

(http://www.atted.bio.titech.ac.jp)

Obayashi et al. (2007) 1,388 arrays, multiple-gene correlation coefficient

query, cis-element prediction, expression data

graph, gene correlation table is available, etc.

Genevestigator

(http://www.genevestigator.ethz.ch)

Zimmermann et al.

(2004)

2,620 arrays, single-gene correlation coefficient

query, digital Northern, response viewer,

gene chronologer (growth stage), gene atlas

(organ/tissue), meta-analyzer, mutant

surveyor, etc.

The Botany Array Resource

(http://bbc.botany.utoronto.ca/)

Toufighi et al. (2005) 1,430 arrays, single-gene correlation coefficient

query, electronic Northern, illustration of gene

expression map, promoter analysis, users

upload their expression data and compute

correlation coefficients, gene correlation data

are available, etc.

a Number of array experiments used for correlation coefficient calculation (in December 2006), and other search and analytical functions.

Network analysis in plant biology 385

http://pfg.psc
http://
http://www.ncbi.nlm.nih.gov/geo/
http://www.ebi
http://csbdb.mpimp-golm.mpg.de
http://www.arabidopsis.leeds
http://csbdb.mpimp-golm.mpg.de
http://www.atted.bio.titech.ac.jp
http://www.genevestigator.ethz.ch
http://bbc.botany.utoronto.ca/


(http://www.atted.bio.titech.ac.jp) (Obayashi et al. 2007)

accept multigene queries as well. Arabidopsis Co-expression

Data Mining Tool (ACT) (http://www.arabidopsis.leeds.

ac.uk/act/) (Jen et al. 2006), ATTED-II, Genevestigator

(http://www.genevestigator.ethz.ch) (Zimmermann et al.

2004) and The Botany Array Resource (BAR) (http://

bbc.botany.utoronto.ca/) (Toufighi et al. 2005) are imple-

mented with gene expression visualizing tools. The expres-

sion visualizing tools of ACT, Genevestigator and BAR

accept multigene queries. Additionally, lists of correlation

coefficients are downloadable in ATTED-II and BAR.

To obtain an overview of the topological features of

the entire Arabidopsis co-expression network, we conducted

a survey on the link number, node number and network

density with respect to the nodes that have at least one link

at certain PCC cut-offs based on correlation coefficients

provided by ATTED-II (Fig. 4A, B). The number of links

and nodes decreases with increasing PCC cut-off threshold

(Fig. 4A). Network density, however, displays a minimal

value at a PCC ranging from 0.55 to 0.66, and shows a

slight increase at a PCC cut-off greater than this range

(Fig. 4B). Below the PCC cut-off 0.55–0.66, many low

PCC links connect nodes together. Naturally, the high

network densities in the low PCC range do not necessarily

mean significant correlations. In contrast, above the

PCC cut-off 0.55–0.66, an increase in network densities is

attributed to the presence of high PCC links densely

connecting a decreasing number of nodes. This implies

that biologically significant modules are expected to be

found above the PCC cut-off where the network density

displays a minimal value.

Are the numbers of microarray experiment data

used to calculate correlation coefficients large enough to

generate robust co-expression networks? It has been

reported that accuracy in identification of co-regulated

genes from co-expression analysis plateaus at 50–100

experiments in the case of yeast (Yeung et al. 2004).

To test this in Arabidopsis, we randomly selected microarray

experiments from ATTED-II, and calculated the network

density of the entire network generated from random sets of

these experiments (Fig. 4C). The result demonstrated that

network density essentially reached equilibrium once4100

arrays were used. This result suggests that the sizes of the

microarray data sets used for the calculation of correlation

coefficients in the public co-expression databases are

reasonably large enough to generate condition-independent

co-expression networks.

Co-expression analysis to identify new genes

and functional modules

Co-expression analysis has already been applied to

some plant biological problems, and successfully generated
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Fig. 4 Overview of global features of the Arabidopsis
co-expression network. (A) The number of links (gray)
and number of nodes (black) in the entire network at positive
PCC cut-off values. (B) Network density of the entire network at
positive PCC cut-off values. The magnified curve (inset) demon-
strates that the network density shows its minimum at a PCC cut-off
of 0.55–0.66 (network density is 0.011), and then increases
above a PCC cut-off of 0.66. Correlation coefficients were retrieved
from ATTED-II. (C) Correlation between numbers of array data
used for PCC calculation and global feature of the network. The
indicated numbers (10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200
and 1,000 array data) of array data were randomly selected from
ATTED-II, and network densities of the entire network generated
from the selected array data were calculated at a PCC cut-off of 0.7.
Random sampling of each indicated number of array data
was performed for 100 repeats. Network density essentially
equilibrated once more than 100 array data were used. Similar
results were obtained for PCC cut-offs of 0.5, 0.6, 0.8 and 0.9
(data not shown).
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biologically relevant hypotheses with respect to functional

relationships between genes. In this section, we summarize

the results from recent reports.

Guide-gene approach: cell wall formation

Cellulose is synthesized by plasma membrane-localized

complexes containing cellulose synthase (CESA) subunits.

Persson and co-workers analyzed genes co-expressed with

CESA genes using a linear regression method based on

expression data from the NASCArray (Persson et al. 2005).

They identified distinct CESA gene clusters associated with

primary (CESA1, 3 and 6) and secondary (CESA4, 7 and 8)

cell wall formation. Several genes known to be involved in

cellulose synthesis, such as COBRA, endochitinase-like gene

1 (CTL1) and their paralogs, were co-expressed with CESA

clusters. These findings suggested that the two groups of

CESA genes act as central parts of functional modules for

primary and secondary cell wall synthesis, respectively.

Furthermore, the results suggested the hypothesis that

COBRA and CTL are components or regulators of CESA

functional modules.

To test the biological significance of the apparent

co-expression, the authors selected genes (At5g54690,

At3g16920, At5g03170 and At4g27435) that are highly

co-expressed with secondary cell wall-related CESA genes

and examined the phenotypes of the T-DNA insertion

mutants. All insertion lines appeared to have alterations in

cell wall composition based on their Fourier transform

infrared (FTIR) spectra. These results supported the

hypothesis that these genes are functionally associated

with cell wall formation.

The authors also estimated degrees of co-expression

of pathways to CESA modules by calculating pathway

scores (Persson et al. 2005). Both CESA modules were

coordinated with several common pathways, including the

homogalacturonan degradation pathway. On the other

hand, the brassinosteroid pathway had higher co-expression

for CESA1, 3 and 6. Lignin and dTDP-rhamnose biosynth-

esis pathways showed higher co-expression for CESA4, 7

and 8. These co-expression patterns suggested that cell wall

synthesis is functionally coordinated with other metabolic

pathways.

Guide-gene approach: isoprenoid biosynthesis

The isoprenoid biosynthesis pathway consists of two

spatially separated pathways. One is the mevalonate (MVA)

pathway in the cytosol, and the other is the methylerythritol

phosphate (MEP) pathway in the plastid. Wille and

co-workers analyzed a network of 40 isoprenoid-related

genes using PCC calculation and a modified Gaussian

graphical model (Wille et al. 2004). Their results

identified the MVA and MEP pathways as two separate

modules. Acetoacetyl-CoA thiolase 1 (AACT1) and

hydroxymethylglutaryl-CoA reductase 1 (HMGR1), genes

for key enzyme of the MVA pathway, were negatively

correlated with the expression of MEP pathway genes.

Isopentenyl diphosphate isomerase 1 (IPPI1) in the

plastidic pathway was positively correlated with MVA

pathway genes. They thus hypothesized that these genes

may be candidates for the regulator of cross-talk between

the two pathways. In this report, the correlation between

the isoprenoid pathway and downstream metabolic path-

ways was inferred by incorporating an additional 795

genes in the network analysis. The result demonstrated

that MVA pathway genes were closely correlated with

plastoquinone and phytosterol pathway genes, while MEP

pathway genes were correlated with carotenoid and

chlorophyll pathway genes.

Guide-gene approach: whole metabolic network

A comprehensive co-expression analysis of metabolic

pathway genes has been reported recently (Wei et al. 2006).

In this report, the authors retrieved 1,330 genes associated

with metabolism from the AraCyc database (Mueller et al.

2003; http://arabidopsis.org/tools/aracyc/). Using these

metabolism-related genes as guide genes, they analyzed

the gene co-expression profile by linear regression, and

confirmed that a few previously reported opinions for

other cases were also true in the case of the Arabidopsis

co-expression network. First, genes belonging to the same

metabolic pathway are likely to be co-expressed, as has

been demonstrated for metabolic pathway genes of yeast

(Ihmels et al. 2004, Kharchenko et al. 2005). Secondly, the

degree of distribution of the node was skewed, with the

majority of metabolic genes having a small number of links

while a few had a large number of links, as also seen in yeast

(Magwene and Kim 2004). Additionally, they developed a

pathway-level co-expression analysis. In this analysis, guide

genes from the metabolic pathway of interest are selected

first (which they called ‘bait genes’), and then genes that are

co-expressed with more than one member of the guide

genes were searched for in the whole genome. Pathway-level

co-expression analysis allows selection of candidate genes

that may be responsible for regulation or coordination of

the expression of metabolic genes.

In addition, Wei et al. (2006) observed that single-copy

metabolic genes tend to have multiple links, while genes

with multiple paralogs had fewer links. Interestingly, the

study of gene co-expression using various Arabidopsis

tissues has demonstrated that large gene families

had highly correlated expression patterns within the

families (Schmid et al. 2005). These results cannot be

compared directly because they focused on different

aspects of co-expression; Wei and co-workers focused

on co-expression with all other genes, while Schmid and

co-workers focused on within-family co-expression.
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However, these results raise a general question in terms

of correlation between the size of a gene family and the

degree of co-expression. In yeast, it has been reported that

there is a higher probability of compensation for duplicate

genes (Gu et al. 2003). In addition, it has been reported that

the disruption of well-connected genes is likely to result in

the exhibition of a severe phenotype (Jeong et al. 2001).

These results suggest that copy numbers and link numbers

of genes correlate with the robustness of the cellular system.

Further investigation is required to clarify the dynamics

between acquisition of co-expression linkage and gene

duplication.

Non-targeted approach: top-down and bottom-up module

detection

Module detection followed by inspection of member

gene annotations is one of the key steps in network analysis

necessary to infer gene functions. For example, if an

unknown gene was found in a densely connected module

in which other member genes were known to be involved

in a certain cellular process, it would be hypothesized that

the unknown gene had functional relationships with

that process. A non-targeted approach aims to detect

local modular structures from the entire co-expression

network, according to the topology of the links.

In comparison with the guide-gene approach that depends

on knowledge of biological processes, a non-targeted

approach facilitates knowledge-independent detection of

modules. Thus, discovery of novel modules that may not be

obtained using the guide-gene approach is expected.

The top-down strategy of the non-targeted approach is

summarized as the process of finding densely connected

regions separated by sparsely connected regions. This

approach has been employed to detect modules, or

‘community structure’, in social and biological networks

(Girvan and Newman 2002). The algorithm is based on the

iterative removal of links with high ‘betweenness’ (Fig. 1B),

i.e. removal of links along which many of the shortest paths

between pairs of nodes run. Links with high ‘betweenness’

are likely to represent the periphery of modules (Fig. 5A).

By removing these links, the authors separated modules

from one another, and successfully demonstrated the

underlying structures of the network.

In contrast to this top-down module extraction

approach, a bottom-up approach has been used to detect

modules, or ‘clusters’, in protein–protein interaction

networks of E. coli and yeast (Altaf-Ul-Amin et al. 2006).

The authors grew seed clusters by adding neighboring nodes

if the addition of the node did not decrease the network

density or cluster property (Fig. 5B; for definition of ‘cluster

property’, see Altaf-Ul-Amin et al. 2006). In many clusters

detected using this algorithm, proteins associated with

similar functional classes were densely linked, suggesting

that the algorithm predicts biologically relevant protein

complexes.

As these module detection strategies depend solely on

the topological property of the network, we expect the

strategies also to be applied to co-expression networks.

Integrated analysis of gene co-expression combined with other

omics data

Gene expression controls accumulation of metabolites,

which in turn regulate the gene expression. Thus, a

combined analysis of metabolite accumulation and gene

co-expression provides new insights into regulatory

processes of metabolite production. Hirai and co-workers

combined metabolome and transcriptome data to identify

control mechanisms regulating responses to sulfur and

nitrogen deficiency (Hirai et al. 2004). Expression profiles

of 13,000 expressed sequence tags (ESTs) and metabolic

Fig. 5 Non-targeted strategies of module detection. (A) Top-down
module extraction approach. Links with high ‘betweenness’ are
removed iteratively to separate the network into modules.
(B) Bottom-up module detection approach. If a neighboring node
(white) does not decrease the network density of the seed cluster
(gray), it is included in the cluster (left). If a neighboring
gene decreases the network density, it is not included in the
cluster (right).
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profiles of 3,000 mass peaks were obtained by cDNA

macroarray and Fourier transform mass spectrometry,

respectively. Fold changes in expression intensities of

ESTs and mass peaks were combined into a single matrix,

and then the expression patterns were classified according

to similarity by a batch-learning self-organizing map

method. Consequently, the authors found regulatory

linkage among nutrient deficiency, primary metabolism

and glucosinolate metabolism (Hirai et al. 2004). Moreover,

they showed the possibility that co-expression analysis

of transcripts and metabolites could identify regulatory

metabolites and genes of metabolic pathways (Hirai et al.

2005). For example, O-acetylserine was clustered together

with genes induced by sulfur deficiency, suggesting that the

genes were coordinately regulated by O-acetylserine under

sulfur deficiency. Several putative transcription factor

genes were clustered with glucosinolate biosynthesis genes,

suggesting that the transcription factors were candidate

genes for controlling glucosinolate metabolism.

Similar gene–metabolite co-expression analysis success-

fully identified terpene synthase genes involved in volatile

compound formation in cucumber (Mercke et al. 2004).

Combined gene–metabolite co-expression analysis using

a plant overexpressing PAP1 transcription factor also

identified novel glucosyltransferase genes involved in

anthocyanin biosynthesis (Tohge et al. 2005). In these

reports, the gene functions predicted by co-expression

analyses were confirmed experimentally using bacterial

expression system or T-DNA insertion lines.

Nikiforova and co-workers used network analysis

to investigate gene co-response to sulfur deficiency

(Nikiforova et al. 2005). They rearranged the original

co-expression network consisting of 6,454 genes and

81 metabolites into a cause-to-effect network starting

from sulfur. This approach predicted that the sulfur

deficiency caused an enhanced lateral root formation via

auxin- and calcium-related signaling pathways.

The integrated analysis of metabolite accumulation

and gene expression has recently been applied to non-model

plants. Rischer and co-workers analyzed a gene–metabolite

co-expression network of the medicinal plant Catharanthus

roseus (Rischer et al. 2006). To overcome the lack of a gene

expression profiling method such as microarray, the authors

used cDNA AFLP (amplified fragment length polymorph-

ism) technology to acquire quantitative gene expression

profiles of C. roseus. Gene-to-gene and gene-to-metabolite

correlation networks allowed them to hypothesize novel

cytochrome P450 genes involved in terpenoid indole

alkaloid biosynthesis and novel AP2-domain transcription

factor genes possibly regulating terpenoid indole alkaloid

biosynthesis. This report demonstrated a potential use of

integrated co-expression analysis to examine the metabolic

regulation of non-model plants.

For simultaneous visualization of transcription and

metabolite networks, pathway viewer tools, which overlay

gene expression data onto metabolic pathway maps,

provide a bird’s eye view of experimentally observed

changes. This type of pathway viewer includes The

Pathway Tools Omics Viewer (http://www.arabidopsis.

org:1555/expression.html) (Paley and Karp 2006),

MapMan (http://gabi.rzpd.de/projects/MapMan/) (Thimm

et al. 2004) and KaPPA-View (http://kpv.kazusa.or.jp/

kappa-view/) (Tokimatsu et al. 2005).

Conclusions and perspectives

Accumulation of Arabidopsis transcriptome data has

facilitated the genome-wide analysis of gene co-expression

profiles. Several co-expression databases provide condition-

independent correlation coefficients computed from large

sets of microarray data. These databases have allowed

the search of co-expressed genes with genes of interest.

Co-expression networks constructed from pair-wise correla-

tion coefficients have provided an efficient way to identify

functional transcription modules associated with specific

biological processes. The biologically relevant hypotheses

developed using co-expression analysis have assisted in the

design of hypothesis-driven experiments and gene prioriti-

zation for those experiments. In summary, co-expression

analysis, using microarray data accumulated so far, is now

within reach of many researchers, even if they do not

compute the correlation coefficients themselves.

Correlation coefficients provided in the databases

are a convenient measure for estimating gene-to-gene

co-expression. However, we emphasize that it is crucial to

review original expression data. Genes naturally exhibit

high correlation if entire expression patterns across diverse

conditions are similar. On the other hand, genes also exhibit

high correlation if they are expressed together under a few

conditions and are otherwise silent. Thus, reviewing original

expression data provides insights into the reason why genes

of interest show high correlation. Some of the co-expression

databases implement a browser of original expression

data, which helps in the discrimination of meaningful

co-expression profiles from less meaningful ones.

Co-expression analysis has laid the foundation for

the system-level understanding of physiological processes.

The next steps include development of methodologies to

integrate multiple omics data sets, as has been proposed for

human and zebrafish (Aerts et al. 2006, Butte and Kohane

2006). Associations between genome, transcriptome, pro-

teome, metabolome and phenome will be considered

together to uncover regulatory relationships that cannot

be extracted from a single omics data set. This line of study

may reveal the function of genes that do not show an

apparent co-expression with any other genes. In addition,
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the next steps include the analysis of time series expression

data. The extent of time displacement existing between gene

expression and its end-points (e.g. metabolite accumulation,

phenotype change) needs to be gauged when relating gene

expression to other omics data using classical correlation

methods. A time scale of response and re-equilibration of

gene expression may include information such as the nature

of interaction within the cellular system (Nicholson et al.

2004). Finally, with the development of the methodology,

correlation-based analysis will shed new light not only on

the static but also on the dynamic aspects of behavior of

plant cellular systems.
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