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1 Introduction

Since the seminal work of Ohno [19], gene duplication—the process of du-
plicating a DNA segment that contains a gene—has been recognized as the
impetus for creating new genes and as an important source of evolutionary
innovation and adaptation. Gene duplication may arise primarily by two
distinct mechanisms [12]. In the first, tandem or segmental duplication, un-
equal recombination occurs between homologous sequences at two places in
the genome. In the second, retroposition, a transcribed mRNA sequence is
reverse-transcribed, and the resultant DNA is inserted into a chromosome. In
contrast to retroposition, tandem duplications may be of sequences contain-
ing many genes and intergenic regions. Finally, errors in segregation during
meiosis can also result in extra copies of entire chromosomes or duplication of
the entire genome. The impact of these processes seems to be extraordinary;
for instance, it has been shown that 50% of prokaryotic genes [5, 24] and over
30-65% of eukaryotic genes [29] are products of gene duplication.

There are already several computational approaches to reveal the number
and type of duplications which are based on identifying segments with a
significant number of homologous genes or gene pairs [7]. Once a library
of such segments has been obtained, one may investigate the possibility for
existence of simple mechanisms by which homologous genes had been created.

The fate of the paralogs with respect to their functional characteriza-
tion includes four possible scenarios: (1) retention of the ancestral function,
(2) migration to assume distinct functions through (2.a) neofunctionaliza-
tion (NEO-F), (2.b) subfunctionalization (SUB-F), also known as biological
division of labor, (2.c) escape from adaptive conflict (EAC), also known as



accumulation of labor and (3) non-functionalization (NON-F), contributing
to loss of genes.

It has already been observed that coordinated migration of duplicated
genes is a rare event, as paralogs diversify more frequently at the level of
regulation, less frequently through changes in their cellular component, bio-
logical process and molecular interactions, and rarely in biochemical function
[26]. Thus, regarding the gene duplication process and the functional char-
acterization of genes, three issues emerge as prominent: gene fission/fusion,
alternative splicing, transcriptional regulation, and protein interaction.

Gene fission and fusion, the process by which a single gene is split into
two separate genes and two adjacent genes are fused into a single gene, re-
spectively, are among the primary processes that generate new genes [22].
Recently, gene fission has been directly related to gene duplication with sub-
sequent partial NON-F [25].

Besides gene duplication, alternative splicing may serve as a variant for
enhancing protein diversity in eukaryotes [14]. The origins of alternative
splicing and its advantages as opposed to gene duplication as a mechanism
of generating protein diversity remain elusive [2]. Recent studies reveal that
there is a trade-off between alternative splicing and gene duplication [16,
11]. After a gene duplication event, the duplicates either lose the splice
variants or the singletons acquire them. Moreover, alternative splicing may
occur through exon duplication, resulting in more exons in the singletons
that may serve as internal paralogs. These findings allude to a possible
interplay between alternative splicing and gene duplication that may reveal
some intersting evolutionary mechanisms.

To address the biological complexity from gene duplication, one may also
focus on the dependence of transcription factor regulation and gene duplica-
tion. It is already known that the complexity of an organism correlates with
an increase in both the ratio and absolute number of transcription factors
[23]. After duplication, the gene may undergo changes of its coding sequence,
which results in different proteins (and, therefore, different functions), or its
upstream region, which renders possible the recognition by different tran-
scription factors. Several evolutionary scenarios are possible if the ancestor
and its copy both remain in the transcriptional gene class [8].

Project objectives Combining the insights about gene duplication events
with gene functional characterization could enable the investigation of evolu-
tionary processes in unprecedented detail. Mathematical studies of growing
networks offer a possibility for developing models that could readily lend



themselves as means for testing evolutionary hypotheses. The goal of this
project is three-fold:

1. Devise mathematical models of gene duplications at various levels of
detail which accurately match the properties of empirical networks for
gene duplication,

2. Provide a unifying framework for ranking of models in terms of their
ability to mimic the empirical findings,

3. Develop and implement a method for parameter ranking which can be
used for establishing the importance of each mechanism involved in the
duplication process.

Providing an accurate model of gene duplication, as an underlying mech-
anism for protein diversification, may in fact provide new insights in the
evolution of (superimposed) processes, such as: gene fission/fusion, alterna-
tive splicing, transcriptional regulation, and protein interaction.

2 Proposed Approach

As more genomes become available and their annotations are improved, the
global view of the gene duplication process and the insights into its impact
on gene fission/fusion, regulation, and splicing become hampered by the
complexity and size of the possible relations that may arise on the system
level representation. The abstraction of all of these processes into networks
offers a fruitful approach, the main goal of which is to relate the structure
of the network to the biological function. Our approach to the study of gene
duplication comprises three steps.

Step I. For a set of given genomes, one may infer the evolutionary rela-
tionships (i.e., “is ancestor of” relation) of orthology and paralogy by using
two existing algorithms, EvolMAP [20] and SYNERGY [26]. According to
Fitch [9], orthologs are genes that share a common ancestor at a speciation
event, while paralogs are related through duplication events. These are not
simple one-to-one relationships, as two paralogs are both orthologous to the
same gene in another species or can result in a one- or many-to-none or-
thologous relationships when genes are lost in a particular species or lineage.
Moreover, since gene fission/fusion and unresolved ambiguities in the compu-
tational approaches, yielding the ancestor relation, may produce more than



Figure 1: Genome representation DAG representation of genomes from
five species, A, B, C, D, and E. The subgraph corresponding to genes of
species A (blue leaves) is marked in blue. Labels indicate the putative func-
tions of orthogroups and genes.

one ancestor per gene, the genome of an organism can be represented by
a directed acyclic graph (DAG). The nodes of the DAG representation are
divided into leaves (nodes with out-degree 0) and internal nodes. A leaf node
is a gene, while an internal node is an orthogroup (i.e., a set of genes that
descended from a single common ancestor gene). To our knowledge, no such
network-based approach for analysis of genomes has been suggested.

The DAG representation of a genome can be coupled with assignment of
labels to each gene representing its functional characterization and possibility
for alternative splicing. In such a way, one arrives at a labeled DAG, as shown
in Figure 1.

The topology of the DAG (without its labels) can be studied in two
possible ways: (1) by defining an optimal decomposition of a DAG, G, into
rooted trees, Ti, 1 ≤ i ≤ k whose union is the G itself, one may arrive
at processes which generate the rooted trees and classify them into several
categories: random, plane-oriented, or distance-based trees, (2) definition
of random growth processes for DAG generation which closely match the
empirical properties of G, namely: in- and out-degree distribution, average



height, or average width, to name a few. While the first approach has been
explored in depth, the second is still in its infancy. Therefore, addressing
these questions would lead to novel insights in both biology and mathematics.

For the labeled DAG and a set of gene functions F , one may investi-
gate several biologically relevant hypotheses: Is it more likely that a gene of
function F1 is an ancestor of a gene of function F2?, How likely is that two
functions F1 and F2 arise at a critical point in the evolution of G)? (this
question is related to the notion of critical point in the “evolution” of ran-
dom graph processes for which a rich theory already exists), or What is the
structural characteristic of G that enables emergence or enrichment in genes
of function F1?

Furthermore, we point out that such representation, although very simple,
(a) enables investigation of functional emergence and distribution in terms
of dynamic competing processes on G, (b) provides means for quantifying
the coupling of NEO-F, SUB-F, EAC, and NON-F.

The outcome of this step will include:

1. Set of rules for generating random DAG topologies representative of a
realistic genome,

2. Set of rules that describe label distribution and emergence in terms of
the topology,

3. Procedure for randomizing a DAG and its labels to test biological hy-
potheses related to gene function, and, finally,

4. Unifying theory that ties structural and biological properties to address
and assess the relationship between the fate of paralogs.

The DAG can be overlaid with two types of networks: gene regulatory
and protein interaction networks (GRN and PIN, respectively). To arrive
at these overlay networks, one has to add node representations for the gene
products (proteins) to the proposed DAG representation.

Step II. GRNs are directed networks modeling the transcriptional regu-
lation of genes. By overlaying a GRN on the DAG representing a genome,
one can investigate the effects of gene duplication on the growth of GRN [23].
Synthetic models of GRN growth by gene duplication have already been in-
vestigated in [8] and [10]. It would be interesting to create a model that
mimics real-world data, including upstream and downstream gene regions



for specific organisms (e.g., Arabidopsis Thaliana, for which necessary data
are available).

Step III. PINs are undirected networks modeling the interaction of pro-
teins encoded by genes. By overlaying a PIN on the DAG one can deduce
the evolutionary laws of PINs and their dependence on the labeled DAG
structure. Similarly to the proposed study of GRNs, we plan to arrive at a
model that mimics protein interaction data for an investigated species.

We plan to provide ranking for the set of proposed models and analyze
the robustness of the network models.

3 Proposed Methods

In this section we described the statistical and graph-theoretic methods for
achieving the goals of our three-step approach.

3.1 Statistical Tools for the Analysis of Global Net-

work Properties

Here, we describe the methods aimed at studying a graph property P defined
for the nodes or edges of a given graph, i.e. a graph property that can be
expressed in terms of a probability distribution. For instance, the degree
of a node is the number its neighbors. The degrees of all nodes can be
summarized by the degree distribution. Given a probability model (i.e.,
exponential, Possion, power-law) our goal is to determine the parameters
which best describe the property P. Moreover, once the parameters for a set
of probability models have been determined, we should be able to distinguish
which model provides the best description for P.

3.1.1 Maximum Likelihood Inference

For a network G, the property P defined for the nodes/edges of G can
be treated as independent observations in the limit of an infinite size net-
work. We take a composite likelihood approach to inference [6]: For a given
functional model Pr(k, θ) of the distribution for a property P we can use
maximum likelihood estimation applied to the composite likelihood in order
to estimate the parameter which best characterizes the distribution of the



data. The composite likelihood of the model given by the observed data
K = {k1, . . . , kn} is defined by

L(θ) =
n

∏

i=1

Pr(ki; θ). (1)

Taking the logarithm, one may obtain the log-likelihood

lk(M) = lk(θ) =

n
∑

i=1

log Pr(ki; θ). (2)

The maximum likelihood estimate (MLE), θ̂, of θ is the value of θ for
which Equations (1) and (2) are maximized. For this value of θ the observed
data is more probable to occur than for any other value of the parameter.

3.1.2 Model Selection with Akaike Weights

Selecting a model which best describes a given data set can be obtained
by using the Akaike information criterion (AIC) [1]. The AIC for a model
Pr(k; θ) is defined by

AIC = −2lk(θ̂) − 2d, (3)

where θ̂ is the MLE of θ and d is the number of parameters required to
define the model, i.e., the dimension of θ. The model with the minimum
AIC is chosen as the best. Note that, due to the parametrization in terms of
d, a more complicated model is only accepted as better if it contains more
information about the data than a simpler model. In order to compare r
different models, we define the relative difference:

∆AIC
j = AICj −

r

min
j=1

AICj , 1 ≤ j ≤ r. (4)

The relative likelihoods of the different models are given by

e−
∆

AIC
j
2 . (5)

The so-called Akaike weights, wj , 1 ≤ j ≤ r can then be obtained by nor-
malizing the relative likelihoods:



wj =
e−

∆
AIC
j
2

∑r

j=1
e−

∆AIC
j
2

. (6)

Given a data set, the Akaike weight wj can be interpreted as the probability
that model j, 1 ≤ j ≤ r is the best model for the observed data.

3.1.3 Goodness-of-Fit

Besides the described Akaike weight, the performance of a model can be
estimated by two other goodness-of-fit statistics: Kolmogorov-Smirnov (KS)
and Anderson-Darling (AD). The KS statistic is defined as

D1 =
n

max
i=1

|Ĉ(i) − C(i)|, (7)

while the AD statistic is given by

D2 =
n

max
i=1

|Ĉ(i) − C(i)|
√

C(i) (1 − C(i))
, (8)

where ˆC(i) and C(i) are the empirical and the theoretical cumulative distri-
bution functions, respectively. In other words C(i) =

∑n

i=1
Pr(i) and Ĉ(i) =

∑n

i=1
P̂ r(i). If Ĉ(i) depends on a parameter θ then Ĉ(i) =

∑n

i=1
P̂ r(i; θ)

from the estimated distribution.
We can then calculate p-values for the values of D1 and D2 by the follow-

ing procedure: if there are n observed data, draw n numbers from Pr(k; θ)
and calculate D1 and D2; repeat this step N times in order to get the null
distributions for D1 and D2. The approximations of the p-values allow to test
how close are the estimated and the empirical distributions for a property P.
This is in fact a parametric bootstrap procedure which uses the estimated
model for a property P.

3.2 Statistical Tools for Selection of Network Models

Recent work on fitting network models comes from social sciences, where the
so-called exponential random models (ERMs also known as p∗ models) are
introduced [27]. Recently, ERMs were applied to the analysis of biological
network structure [21]. The p∗ models focus on “local” structural features



of networks (e.g., characteristics of nodes that determine a presence of an
edge). Contrary to this approach, we aim at estimating the likelihood of
a graph model that may approximate the structure of a given biological
network without relying on specific global properties.

First, we need a specification of the model, and to this end we employ
probabilistic inductive classes of graphs [13]. A probabilistic inductive class

of graphs (PICG), I, is given by:

1. class B of initial graphs, the basis of PICG,

2. class R of generating rules, each with distinguished left element to
which the rule is applied to obtain the right element,

3. probability distribution specifying how the initial graph is chosen from
class B,

4. probability distribution specifying how the rules from class R are ap-
plied, and, finally,

5. probability distribution specifying how the left elements for every rule
in class R are chosen.

Let the graph model be described by a vector-valued parameter θ (item 3
in the definition of the PICG) and let Gt be an observation from the model—
a graph after applying the rules (from item 2 of the PICG definition) t times.
We are intersted in finding the MLE of the graph Gt, which is tantamount
to calculating the likelihood of Gt as a function of θ.

We say that a node (edge) is removable if it can be obtained by one of the
rules in item (2) of the PICG definition, above. By focusing on the removable
nodes, we first define δ(Gt, v) as the graph obtained by deleting node v from
Gt. We can then obtain the following definition of the likelihood:

L(θ, Gt) =
1

t

∑

v is removable

ω(θ, Gt, v)L(θ, δ(Gt, v)), (9)

where

ω(θ, Gt, v) = Pθ(Gt|δ(Gt, v)), (10)

and the factor 1/t denotes the probability that v is the last added node (by
assuming that the rules in R add one node per time step).



Note that Equation (10) implies checking all of the possible node (edge)
orderings, and, therefore, although L(θ, Gt) can be evaluated recursively, in
practice is intractable due to the super-exponentially many permutations.
However, the problem can be solved by using Importance Sampling [18],
which allows writing the likelihood as an expectation over a Markov chain
[4, 28, 17].

3.3 Biological Robustness from Topology

Robustness is a property that allows a system to maintain its functions de-
spite external and internal perturbations. Kitano [15] specifies that biological
robustness is tightly related to the existence of bow-tie structures and their
hierarchical ordering.

A directed graph with bow-tie structure consists of four parts: giant
strong component (GSC), in-subset (IS), out-subset (OS) and isolated subset
(IS). The GSC is the largest strongly connected components, IS consists of
nodes that can reach the GSC but cannot be reached from it, while OS
consists of nodes that are accessible from the GSC, but do not link back to it.
The IS contains nodes that can neither reach nor be reached from the GSC.
By designing an algorithm for creation of bow-tie hierarchy and defining a
set of indices on such hierarchy one can quantify the robustness of a directed
biological network. The analysis of metabolic networks presented in [30] is
a similar first step, yielding a visualization tool rather than a method for
quantifying the robustness. We plan to analyze the gene regulatory network
overlaid on the DAG representation of a genome to reveal some biological
properties from the inherent topology of the network. Centrality indices and
measures of congestion are some possibilities we would like to investigate.

For a DAG G representing an investigated genome, first we define an st-
DAG as DAG with a special node s, denoting a source, and a special node t,
denoting a target. It is trivial to show that any DAG can be turned into an
st-DAG which then can be analyzed in terms of how far it is from a series
parallel graph.

The class of series-parallel (sp-) graphs is defined as follows: A graph
is an sp-graph, if it may be turned into an by a sequence of the following
operations:

• Replacement of a pair of parallel edges with a single edge that connects
their common endpoints and



• Replacement of a pair of edges incident to a vertex of degree 2 other
than s or t with a single edge.

An sp-index of a st-DAG is then defined as the minimum number of
node reductions required to reduce a given st-DAG into a graph with one
directed edge, when used along with series and parallel reductions. A node
reduction contracts a node with in-degree (out-degree) of one into its single
incoming (outgoing) neighbor. Since the st-DAGs associated to different
genomes have different number of nodes, we propose to use the normalized sp-
index as a measure of genome complexity, where normalization is performed
with respect to the number of nodes in an st-DAG. Simple observations can
be used to arrive at the following algorithm for determining the normalized
sp-index of an st-DAG which employs the definitions of a dominator tree
T d, reverse dominator tree T r, and a complexity graph G∗. One can then
prove that the normalized sp-index of the st-DAG is given by the size of
the maximum matching in G∗ divided by the order (number of nodes) of G.
Reduction of sp-graphs with respect to some flow problems is discussed in
[3].
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