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Clustering of the Self-Organizing Map
Juha Vesanto and Esa Alhoniemi, Student Member, IEEE

Abstract—The self-organizing map (SOM) is an excellent tool in
exploratory phase of data mining. It projects input space on pro-
totypes of a low-dimensional regular grid that can be effectively
utilized to visualize and explore properties of the data. When the
number of SOM units is large, to facilitate quantitative analysis of
the map and the data, similar units need to be grouped, i.e., clus-
tered. In this paper, different approaches to clustering of the SOM
are considered. In particular, the use of hierarchical agglomerative
clustering and partitive clustering using -means are investigated.
The two-stage procedure—first using SOM to produce the proto-
types that are then clustered in the second stage—is found to per-
form well when compared with direct clustering of the data and to
reduce the computation time.

Index Terms—Clustering, data mining, exploratory data anal-
ysis, self-organizing map.

I. INTRODUCTION

DATA mining processes can be divided to six sequential,
iterative steps:

1) problem definition;
2) data acquisition;
3) data preprocessing and survey;
4) data modeling;
5) evaluation;
6) knowledge deployment.

Each step is essential: The problem defines what data are used
and what is a good solution. Modeling makes it possible to apply
the results to new data. On the other hand, data modeling without
good understanding and careful preparation of the data leads to
problems. Finally, the whole mining process is meaningless if
the new knowledge will not be used [1].

The purpose of survey is to gain insight into the data—possi-
bilities and problems—to determine whether the data are suffi-
cient and to select the proper preprocessing and modeling tools.
Typically, several different data sets and preprocessing strate-
gies need to be considered. For this reason, efficient visualiza-
tions and summaries are essential. In this paper, we focus on
clusters since they are important characterizations of data.

The self-organizing map (SOM) [2] is especially suitable for
data survey because it has prominent visualization properties.
It creates a set of prototype vectors representing the data set
and carries out a topology preserving projection of the proto-
types from the -dimensional input space onto a low-dimen-
sional grid. This ordered grid can be used as a convenient vi-
sualization surface for showing different features of the SOM
(and thus of the data), for example, the cluster structure [3].
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However, the visualizations can only be used to obtain
qualitative information. To produce summaries—quantitative
descriptions of data properties—interesting groups of map units
must be selected from the SOM. The most obvious such a group
is the whole map. While its properties are certainly interesting,
even more useful summaries can be prepared if the SOM (and
thus the data) actually consist of two or more separate regions,
and these are studied separately. Another option would be to
consider all map units individually, but in the case of a large
map, this could result in far too many summaries. Thus, to
be able to effectively utilize the information provided by the
SOM, methods to give good candidates for map unit clusters
or groups are required. It should be emphasized that the goal
here is not to find an optimal clustering for the data but to
get good insight into the cluster structure of the data for data
mining purposes. Therefore, the clustering method should be
fast, robust, and visually efficient.

The clustering is carried out using a two-level approach,
where the data set is first clustered using the SOM, and then, the
SOM is clustered. The most important benefit of this procedure
is that computational load decreases considerably, making
it possible to cluster large data sets and to consider several
different preprocessing strategies in a limited time. Naturally,
the approach is valid only if the clusters found using the SOM
are similar to those of the original data. In the experiments, a
comparison between the results of direct clustering of data and
clustering of the prototype vectors of the SOM is performed,
and the correspondence is found to be acceptable.

II. CLUSTERING

A. Definitions

A clustering means partitioning a data set into a set of
clusters , . In crisp clustering, each data
sample belongs to exactly one cluster. Fuzzy clustering [4]
is a generalization of crisp clustering where each sample has
a varying degree of membership in all clusters. Clustering
can also be based on mixture models [5]. In this approach,
the data are assumed to be generated by several parametrized
distributions (typically Gaussians). Distribution parameters are
estimated using, for example, the expectation-maximation al-
gorithm. Data points are assigned to different clusters based on
their probabilities in the distributions. However, neither fuzzy
clustering nor mixture models based clustering are considered
in this study because the goal was to evaluate clustering of the
SOM using a few simple standard methods.

A widely adopted definition of optimal clustering is a par-
titioning that minimizes distances within and maximizes dis-
tances between clusters. However, this leaves much room for
variation: within- and between-clusters distances can be defined
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TABLE I
WITHIN-CLUSTER DISTANCES S(Q ) AND

BETWEEN-CLUSTERSDISTANCESd(Q ; Q ); x ; x 2 Q , i 6= i ,
x 2 Q , k 6= l. N IS THE NUMBER OF SAMPLES IN CLUSTERQ AND

c = 1=N x

in several ways; see Table I. The selection of the distance cri-
terion depends on application. The distance norm is yet
another parameter to consider. In this paper, Euclidean norm
is used because it is widely used with SOM. In addition, the

-means error criterion is based on it.
Many algorithms utilize local criteria in clustering data. For

example, and in Table I are based on distance to nearest
neighbor. However, the problem is that they are sensitive to
noise and outliers. Addition of a single sample to a cluster can
radically change the distances [6]. To be more robust, the local
criterion should depend on collective features of a local data set
[7]. Solutions include using more than one neighbor [8] or a
weighted sum of all distances. It has been shown that the SOM
algorithm implicitly uses such a measure [9].

B. Algorithms

The two main ways to cluster data—make the parti-
tioning—are hierarchical and partitive approaches. The
hierarchical methods can be further divided to agglomerative
and divisive algorithms, corresponding to bottom-up and
top-down strategies, to build a hierarchical clustering tree. Of
these agglomerative algorithms are more commonly used than
the divisive methods and are considered in this paper.

Agglomerative clustering algorithms usually have the fol-
lowing steps:

1) Initialize: Assign each vector to its
own cluster.
2) Compute distances between all clus-
ters.
3) Merge the two clusters that are
closest to each other.
4) Return to step 2 until there is only
one cluster left.

In other words, data points are merged together to form a clus-
tering tree that finally consists of a single cluster: the whole data

Fig. 1. Dendrogram of a set of 14 points in 1-D space. A partitioning can
be obtained by cutting the dendrogram at a certain level, for example, at the
level where there are only two clusters left, because there is a large jump in the
dendrogram. An alternative way is to cut the dendrogram at different level for
each branch.

set. The clustering tree (dendrogram) can be utilized in interpre-
tation of the data structure and determination of the number of
clusters.

However, the dendrogram does not provide a unique clus-
tering. Rather, a partitioning can be achieved by cutting the den-
drogram at certain level(s); see Fig. 1. The most typical solution
is to cut the dendrogram where there is a large distance between
two merged clusters. Unfortunately, this ignores the fact that the
within-cluster distance may be different for different clusters.
In fact, some clusters may be composed of several subclusters;
to obtain sensible partitioning of the data, the dendrogram may
have to be cut at different levels for each branch [10]. For ex-
ample, two alternative ways to get three clusters are shown in
Fig. 1.

Partitive clustering algorithms divide a data set into a number
of clusters, typically by trying to minimize some criterion or
error function. The number of clusters is usually predefined,
but it can also be part of the error function [11]. The algorithm
consists of the following steps.

1) Determine the number of clusters.
2) Initialize the cluster centers.
3) Compute partitioning for data.
4) Compute (update) cluster centers.
5) If the partitioning is unchanged (or
the algorithm has converged), stop; oth-
erwise, return to step 3.

If the number of clusters is unknown, the partitive algorithm
can be repeated for a set of different number of clusters, typi-
cally from two to , where is the number of samples in the
data set. An example of a commonly used partitive algorithm is
the -means, which minimizes error function

(1)
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Fig. 2. First abstraction level is obtained by creating a set of prototype vectors
using, e.g., the SOM. Clustering of the SOM creates the second abstraction level.

where is the number of clusters, and is the center of
cluster .

Partitive methods are better than hierarchical ones in the sense
that they do not depend on previously found clusters. On the
other hand, partitive methods make implicit assumptions on the
form of clusters. For example,-means tries to find spherical
clusters.

To select the best one among different partitionings, each
of these can be evaluated using some kind of validity index.
Several indices have been proposed [6], [12]. In our simula-
tions, we used the Davies–Bouldin index [13], which uses
for within-cluster distance and for between clusters distance.
According to Davies–Bouldin validity index, the best clustering
minimizes

(2)

where is the number of clusters. The Davies–Bouldin index is
suitable for evaluation of-means partitioning because it gives
low values, indicating good clustering results for spherical clus-
ters.

Many clustering methods, for example, agglomerative clus-
tering using the complete linkage , require the clusters to be
compact and well separated. In real data, this is rarely the case.
Rather, the gaps between clusters are obscured by noise, the
clusters overlap, and there are outliers. When the data set size in-
creases, computational load also becomes a problem, especially
if some of the distance measures or indices are computationally
expensive, like average distanceand average linkage .

C. Two-Level Approach

The approach used in this paper (clustering of the SOM rather
than clustering the data directly) is depicted in Fig. 2. First, a
large set of prototypes—much larger than the expected number
of clusters—is formed using the SOM or some vector quanti-
zation algorithm. The prototypes can be interpreted as “proto-
clusters,” which are in the next step combined to form the ac-
tual clusters. Each data vector of the original data set belongs to
the same cluster as its nearest prototype. Similar multiple-level
approaches to clustering have been proposed earlier, e.g., in
[9]. While extra abstraction levels yield higher distortion, they
also effectively reduce the complexity of the reconstruction task
[14].

The primary benefit of the two-level approach is the reduction
of the computational cost. Even with relatively small number of
samples, many clustering algorithms—especially hierarchical

TABLE II
TRAINING PARAMETERS OF THESOM’S. PARAMETERS� (0) AND � (0) ARE

INITIAL NEIGHBORHOODWIDTHS FOR THEROUGH AND FINE-TUNING PHASES,
RESPECTIVELY. LAST COLUMN CONTAINS THE TOTAL TRAINING TIME

TABLE III
EXECUTION TIMES OF DIFFERENTPARTITIONINGS. TIMES FORk-MEANS

ARE FOR 29 PARTITIONINGS k = 2; � � � ; 30 USING 100 RUNS WITH

DIFFERENTINITIALIZATIONS . COMPUTATION TIMES FORCONSTRUCTING THE

SOM’S ARE SHOWN IN THE FIRST COLUMN

ones—become intractably heavy. For this reason, it is conve-
nient to cluster a set of prototypes rather than directly the data
[15].

Consider clustering samples using-means. This involves
making several clustering trials with different values for. The
computational complexity is proportional to , where

is preselected maximum number of clusters. When a set of
prototypes is used as an intermediate step, the total complexity
is proportional to , where is the number of
prototypes. With and , the reduction
of computational load is about , or about six-fold for

. Of course, this is a very rough estimate since many
practical considerations are ignored.

The reduction is even greater for agglomerative algorithms
since they cannot start from but have to start with clus-
ters and work their way down from there. If agglomerative clus-
tering is used during the second step, the two-level strategy is
a way to use partitive clustering to avoid those first
steps. Table III shows computation times for both direct and
two-level clustering strategies in our experiments. Even with
these relatively small data sets, the difference is remarkable es-
pecially in the agglomerative methods.

Another benefit is noise reduction. The prototypes are local
averages of the data and, therefore, less sensitive to random
variations than the original data. In [16], partitive methods
(i.e., a small SOM) greatly outperformed hierarchical methods
in clustering imperfect data. Outliers are less of a problem
since—by definition—there are very few outlier points, and
therefore, their impact on the vector quantization result is
limited. On the other hand, this may also be a problem if the
outliers are actually the interesting areas. A recently proposed
clustering method—Chameleon—also utilizes a two-level
strategy to get more reliable estimates of cluster similarities [8].
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Fig. 3. Different criteria for finding interesting cluster merges: Davies–Bouldin (left) and gap (right). Merge is interesting whend > S1 + S2, whereS1 and
S2 are within-cluster distances, andd is the distance between clusters.

III. CLUSTERING OF THESOM

A. SOM Training

The SOM consists of a regular, usually two-dimensional
(2-D), grid of map units. Each unit is represented by a
prototype vector , where is input
vector dimension. The units are connected to adjacent ones
by a neighborhood relation. The number of map units, which
typically varies from a few dozen up to several thousand,
determines the accuracy and generalization capability of the
SOM. During training, the SOM forms an elastic net that folds
onto the “cloud” formed by the input data. Data points lying
near each other in the input space are mapped onto nearby
map units. Thus, the SOM can be interpreted as a topology
preserving mapping from input space onto the 2-D grid of map
units.

The SOM is trained iteratively. At each training step, a sample
vector is randomly chosen from the input data set. Distances
between and all the prototype vectors are computed. The best-
matching unit (BMU), which is denoted here by, is the map
unit with prototype closest to

(3)

Next, the prototype vectors are updated. The BMU and its
topological neighbors are moved closer to the input vector in
the input space. The update rule for the prototype vector of unit

is

(4)

where
time;
adaptation coefficient;
neighborhood kernel centered on the winner unit:

(5)

where and are positions of neuronsand on the SOM
grid. Both and decrease monotonically with time.
There is also a batch version of the algorithm where the adapta-
tion coefficient is not used [2].

In the case of a discrete data set and fixed neighborhood
kernel, the error function of SOM can be shown to be [17]

(6)

where is number of training samples, and is the number of
map units. Neighborhood kernel is centered at unit, which
is the BMU of vector , and evaluated for unit. If neigh-

borhood kernel value is one for the BMU and zero elsewhere,
this leads to minimization of (1)—the SOM reduces to adaptive

-means algorithm [18]. If this is not the case, from (6), it fol-
lows that the prototype vectors are not in the centroids of their
Voronoi sets but are local averages of all vectors in the data set
weighted by neighborhood function values.

The SOM algorithm is applicable to large data sets. The com-
putational complexity scales linearly with the number of data
samples, it does not require huge amounts of memory—ba-
sically just the prototype vectors and the current training
vector—and can be implemented both in a neural, on-line
learning manner as well as parallelized [32]. On the other hand,
the complexity scales quadratively with the number of map
units. Thus, training huge maps is time consuming, although
the process can be speeded up with special techniques; see,
for example, [33] and [34]. For example, in [33], a SOM with
million units was trained with 6.8 million 500-dimensional
data vectors.

If desired, some vector quantization algorithm, e.g.,-means,
can be used instead of SOM in creating the first abstraction level.
Other possibilities include the following.

• Minimum spanning tree SOM [19], neural gas [20],
growing cell structures [21], and competing SOM’s [22]
are examples of algorithms where the neighborhood rela-
tions are much more flexible and/or the low-dimensional
output grid has been discarded. Their visualization is
much less straightforward than that of the SOM.

• In addition, several such growing variants of the SOM
have been proposed where the new nodes do have a well-
defined place on low-dimensional grid, and thus, the visu-
alization would not be very problematic [23]–[27].

The SOM variants were not used in this study because we
wanted to select the most commonly used version of the SOM.
However, the principles presented in this paper could naturally
be applied to the prototype vectors of these variants as well.

The two-level approach in clustering can only work if the
prototypes reflect the properties of the data. The clusters found
using the prototypes should be similar to those that would have
been found directly from the data. In vector quantization, it has
been shown that the density of the prototype vectors is propor-
tional to const , where is the probability den-
sity function (p.d.f.) of the input data, is dimension, and
is distance norm [28], [29]. For the SOM, connection between
the prototypes and the p.d.f. of the input data has not been de-
rived in general case. However, a similar power law has been
derived in the 1-D case [30]. Even though the law holds only
when the number of prototypes approaches infinity and neigh-
borhood width is very large, numerical experiments have shown
that the computational results are relatively accurate even for a
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(a) (b)

(c)

Fig. 4. Illustration of (a) data set I, (b) II, and (c) and III. Two-dimensional data set I is directly plotted in two dimensions, whereas data sets II andIII are projected
to the 2-D subspace spanned by the two eigenvectors with largest eigenvalues. The gray dots are data points, and the black crosses are prototype vectors of the
SOM trained with corresponding data.

small number of prototypes [31]. Based on close relation be-
tween the SOM and-means, it can be assumed that the SOM
roughly follows the density of training data when not only the
number of map units but also the final neighborhood width are
small, as was the case in our experiments.

B. Visual Inspection

An initial idea of the number of clusters in the SOM, as
well as their spatial relationships, is usually acquired by visual

inspection of the map. The most widely used methods for
visualizing the cluster structure of the SOM are distance matrix
techniques [35], [36], especially the unified distance matrix
(U-matrix). The U-matrix shows distances between prototype
vectors of neighboring map units. Because they typically have
similar prototype vectors, U-matrix is actually closely related
to the single linkage measure. It can be efficiently visualized
using gray shade [37]; see, for example, Figs. 7(a), 11(a), and
12(a).
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Another visualization method is to display the number of
hits in each map unit. Training of the SOM positions interpo-
lating map units between clusters and thus obscures cluster bor-
ders. The Voronoi sets of such map units have very few samples
(“hits”) or may even be empty. This information can be utilized
in clustering the SOM by using zero-hit units to indicate cluster
borders [38].

Generic vector projection methods can also be used. As op-
posed to the methods above, these are generally applicable to
any set of vectors, for example the original data set. The high-di-
mensional vectors are projected to a low dimension so that inter-
sample distances are preserved as faithfully as possible. Thus,
the high-dimensional data set can be visualized while still pre-
serving its essential topological properties. Examples of such
nonlinear projection methods include multidimensional scaling
techniques [39], [40], Sammon’s mapping [41], and curvilinear
component analysis [42]. A special technique is to project the
prototype vectors into a color space so that similar map units are
assigned similar colors [43], [44].

Of course, based on the visualization, one can select clusters
manually. However, this is a tedious process and nothing guar-
antees that the manual selection is done consistently. Instead,
automated methods are needed.

C. SOM Clustering

In agglomerative clustering, the SOM neighborhood relation
can be used to constrain the possible merges in the construction
of the dendrogram [45]. In addition, knowledge of interpolating
units can be utilized both in agglomerative and partitive clus-
tering by excluding them from the analysis. If this is used to-
gether with the neighborhood constraint in agglomerative clus-
tering, the interpolative units form borders on the map that the
construction of the dendrogram must obey. It may even be that
the interpolating units completely separate some areas from the
rest of the map.

The dendrogram of a map with units contains dif-
ferent nonsingleton clusters, which is far too many to facilitate
summarization. Additionally, most of these clusters are com-
pletely uninteresting: Many of them differ only by addition of a
single or a few map units. Therefore, the dendrogram has to be
pruned. The objective is to find the interesting groups. This can
be done by testing for each merge of the dendrogram whether
the involved clusters are sufficiently different from each other.
If they are, both are added to the list of interesting groups. In-
teresting merges can be defined, for example, as follows (see
Fig. 3).

• The Davies–Bouldin index (2) can be calculated for the
two clusters. If the index is greater than one, there is an
interesting merge.

• If the gap between the two clusters is greater
than the sum of mean distances between points in the two
clusters , there is an interesting merge.

To be able to evaluate the criteria above, all singleton clusters
have to be ignored.

Note that the distance measures used in the gap criterion are
very sensitive to noise, especially if the number of samples in a
cluster is small. However, the problem can be alleviated some-

Fig. 5. High-level clusterA consists of subclustersB andC and a set of
separate samplesS. The subclustersB andC represent focus on local details,
but in larger context, they, together withS, form the high-level clusterA.

what by requiring a wider gap if the sample size is small. Let
be a random sample of size, whose mean can be estimated
as . It is easy to show that its variance
is Var Var . In many distribution models—for
example, the gamma distribution—the variance is directly
proportional to expectation Var . Therefore, let
Var . Now, let be the distance between
each sample and its nearest neighbor in clusterof size
samples. A robust upper limit for nearest neighbor distance

can be acquired by Var
. In order to make

also the between-clusters distance more robust, the
mean of four shortest distances between the samples can be
used instead of only the shortest distance.

The pruning produces a more clear dendrogram but still does
not provide a unique partitioning. This is not a problem if the
objective is only to find a set of interesting groups. If necessary,
a final partitioning can be selected by hand using some kind of
interactive tool [10]. By viewing the clustering hierarchy down
from top, one can concentrate on the big, firmly separated clus-
ters and discard the low-level groups. In our experiments, how-
ever, an automated procedure for finding the partitioning from
the dendrogram was used; see Section IV-C for details.

IV. EXPERIMENTS

A. Data Sets

In the experiments, one real-world and two artificial data sets
were used. Plots of the three data sets are presented in Fig. 4.

• Data set I (“clown”) consisted of 2220 2-D samples. The
data set had the following seven clusters:

• cluster with three subclusters (right eye);
• spherical cluster (left eye);
• elliptical cluster (nose);
• nonspherical cluster (U-shaped: mouth);
• large and sparse cluster (body).

In addition, some outliers were added to see how they affect the
clustering. As it happens, the outliers are mostly concentrated
on the left and seem to form a cluster of their own.

• Data set II was generated to see how the algorithms per-
form when there is only one cluster: a spherical Gaussian
distribution in eight dimensions (1000 samples).
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(a) (b)

(c)

Fig. 6. Davies–Bouldin index for partitive clustering of data sets I–III (a)–(c) as function of the number of clusters. In each plot, the number of clusters runs
on horizontal axis, and Davies–Bouldin index values lie on the vertical axis. Clustering results for the data are marked by solid line and results for the prototype
vectors of the SOM by dashed line, respectively.

• Data set III consisted of 4205 75-D samples of the tech-
nology of pulp and paper mills of the world [46].

Especially in data set III, the original variables had very dif-
ferent scales. Therefore, as part of preprocessing, all variables
in each data set were linearly scaled to have zero mean and unit
variance.

B. SOM’s

A SOM was trained using the sequential training algorithm
for each data set.1 All maps were linearly initialized in the
subspace spanned by the two eigenvectors with greatest eigen-
values computed from the training data. The maps were trained
in two phases: a rough training with large initial neighborhood
width and learning rate and a fine-tuning phase with small ini-
tial neighborhood width and learning rate; see Table II. The

1In the SOM training, freely available Matlab package SOM Toolbox was
used. For more information, see URL http://www.cis.hut.fi/projects/som-
toolbox/.

neighborhood width decreased linearly to 1; the neighborhood
function was Gaussian [see (5)]. The training length of the two
phases were 3 and 10 epochs, and the initial learning rates 0.5
and 0.05, respectively. The learning rate decreased linearly to
zero during the training.

The prototype vectors of the SOM’s have been superimposed
on the plots of the data sets in Fig. 4. Note that the prototype
vectors are well within the data sets and that this has removed
most of the effect of outliers in data set I [Fig. 4(a)].

C. Clustering

For each SOM, a visual inspection was performed. Then, ag-
glomerative and partitive clustering algorithms were applied.
Map units with empty Voronoi sets were excluded from the anal-
ysis. The neighborhood relations were not used.

In the agglomerative clustering, single, average, and complete
linkages were used in the construction phase. The pruning was
carried out using gap criterion with (see Section III-C).



VESANTO AND ALHONIEMI: CLUSTERING OF THE SELF-ORGANIZING MAP 593

(a)

(b)

Fig. 7. (a) U-matrix and (b) prototype vectors of the SOM of data set I in input
space. In the U-matrix, dark color indicates large distance between adjacent
map units and light color small distance, respectively. Data clusters have been
encircled in both figures, and the corresponding ones have been given the same
labels. The interpolating map units have been marked with “X”s. Note that the
interpolating map units completely separate the two outliers (“O1” and “O2”)
from the rest of the map.

Excluding the interpolating units proved to be very important;
if this was not done, the interpolating units blurred out the gaps
that the criterion was trying to detect.

As mentioned earlier, the list of interesting clusters does not
give a specific partitioning. Looking at the pruned list down
from top, the clusters form a hierarchy where each high-level
cluster consists of some low-level clusters and a set of separate
samples, see Fig. 5. The final partitioning was done by the fol-
lowing procedure.

1) A parent cluster was used if the subclusters represented
less than half of its samples. Otherwise, the parent cluster
was ignored, and the subclusters were used instead.

2) All remaining units (interpolative as well as those ignored
above) were partitioned to nearest cluster.

3) Each sample in the original data was partitioned to the
same cluster as its BMU.

Applying the same agglomerative clustering procedure di-
rectly to the data proved to be problematic. Because the original
data sets were both much bigger and more noisy than the SOM

(a)

(b)

Fig. 8. (a) Full dendrogram and (b) pruned dendrogram of the SOM of data set
I. The pruning is essential because it reduces the number of different clusterings
into a reasonable level.

prototypes, using resulted in hundreds of small clusters.
For data set I, gave reasonable results and was used
for comparison. For data sets II and III, the gap criterion did not
work at all. Instead, the comparisons in Section IV-G were done
based on partitionings done by simply cutting the dendrograms
at certain level.

The partitive clustering of both SOM’s and the data sets was
carried out using batch-means algorithm. Because-means
is sensitive to initialization, it was run 100 times for each
with different random initializations. The best partitioning for
each number of clusters was selected using error criterion in
(1). Another possibility would have been to use some annealing
technique to better avoid local minima of the error function
[47]–[49].

To select the best clustering among the partitionings with dif-
ferent number of clusters, the Davies–Bouldin validity index (2)
was used. In practice, though, it is better to use the index values
as a guideline rather than absolute truth. As seen in Fig. 6, the
index plots have several local minima. Each sharp local min-
imum in the validity index plot is certainly worth a look since it
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(a) (b)

(c)

Fig. 9. Results of agglomerative clustering of the SOM of data set I. The interpolating units have been left out of the analysis. The pruned dendrogram (a) has 15
different clusters: Each node and leaf represents one “interesting” cluster. The same symbols have been used to indicate (b) cluster memberships of map units in
the input space and (c) on the map grid.

indicates that the addition of one cluster enabled the algorithm
to partition the data much better.

D. SOM of Data Set I

Visual Inspection:In Fig. 7, two visualizations of the SOM
of data set I are shown: the U-matrix and the map units in the
input space. Corresponding clusters in both figures have been
encircled and labeled. From the U-matrix, one can easily de-
tect seven distinct clusters, two of which (“O1” and “O2”) are
very small and correspond to outliers. The interpolating units
are positioned neatly between the clusters, although only the
two outliers are completely separated from the rest of the map.
There are also some interpolating units within the cluster corre-
sponding to right eye (“E”), possibly indicating presence of two
or more subclusters. Note that the relative size of the clusters is
proportional to the number of samples in each cluster and not to
the radius of the cluster in the input space.

Agglomerative Clustering:The full and pruned dendrograms
of the SOM of data set I are shown in Fig. 8. The procedure
produced 15 interesting clusters, whose hierarchy is shown in
Fig. 9(a). The final partitioning was based on the pruned dendro-
gram: the results, excluding the interpolating units, are shown in
Fig. 9(b) and (c).

The result is satisfactory. In the final partitioning, all the
original clusters have been found: even the three subclusters
of the right eye. However, there is one additional cluster in
the right eye, so the performance is not perfect. The right eye
causes problems in the SOM-based approach because it is in
an extreme corner of the data distribution and the amount of
data in that part of the input space is relatively small. If better
accuracy is desired, a new clustering can be made using data
in that area only. In addition, note that if the neighborhood
constraint had been used in clustering, the outlying map units
would have formed two small clusters of their own because
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(a) (b)

(c)

Fig. 10. Results of (a) partitive clustering of the data set I as well as (b) the corresponding SOM in the input space and (c) on the map grid.

they would have been completely separated from the rest of
the map.

Partitive Clustering:According to the Davies–Bouldin index
in Fig. 6(a), the number of clusters is small, say, below ten. The
index computed from the clustering result of the data has a neg-
ative peak at five clusters, whereas the corresponding index of
the prototypes of the SOM has similar peak at four clusters. Ac-
tually, at all clusters below 15, there is one cluster shift in the re-
sults. The reason for this off-by-one observation is that the direct
clustering groups the outliers on the left to one cluster, whereas
the two-level approach joins them to the left eye cluster. The
clustering results using five clusters for the whole data and four
clusters for SOM are presented in Fig. 10.

Both clustering the data directly and clustering of prototype
vectors using -means gave reasonable results, but the following
problems were observed.

• The three small clusters close to each other in the right
eye were not discovered as separate clusters but as a single
cluster; as a matter of fact, they were not separated until
over 20 clusters were used (not shown).

• The nonspherical cluster could not be properly recognized
as one cluster.

Both difficulties originate from properties of the-means
algorithm: It not only seeks for spherical but also clusters with
roughly equal number of samples. Therefore, the-means
should never be blindly used to cluster any data without careful
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(a)

(b)

(c) (d)

Fig. 11. Clustering of the SOM of data set II. (a) U-matrix. (b) Sammon’s mapping. (c) Partitioning using agglomerative clustering. (d) Partitioningusing partitive
clustering with four clusters. In the Sammon’s mapping, the map units have been indicated by circles and neighboring map units have been connected to each other
with lines.

verification of the results. It should also be noted that as the
number of clusters is increased, the number of samples in

clusters decreases, which makes algorithm more sensitive
to outliers.
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E. SOM of Data Set II

U-matrix and Sammon’s mapping of the SOM of data set II
are presented in Fig. 11(a) and (b). According to them, there are
no clusters; neither visualization reveals any cluster structure,
and there are only four interpolating units randomly positioned
around the map.

In Fig. 11(c), the partitioning obtained by the agglomerative
clustering is shown. The result is perfect; except for interpola-
tive units, which were left out of the analysis, all units belong to
the same cluster. In the partitive clustering, the Davies–Bouldin
index reduced to almost constant level as the number of cluster
centers increased; see Fig. 6(b). Even though this does not in-
dicate presence of only one cluster, it suggests that the data is
somehow suspicious. Clustering the SOM of data set II using
four clusters is shown in Fig. 11(d). As might be expected, the
clustering nicely splits the SOM into four parts which are almost
of equal size.

F. SOM of Data Set III

U-matrix and Sammon’s mapping of the SOM of data set III
are presented in Fig. 12. From the U-matrix, one can clearly
distinguish several—maybe about 20—separate areas. The in-
terpolating map units (marked by “X”s on the U-matrix) are
mostly positioned on the borders of the U-matrix. Sammon’s
mapping is badly folded, but in addition, there one can see sev-
eral concentrations of points. The folding itself indicates that the
actual dimension of the data set is much higher than two, which
is the output dimension used in the projection.

In Fig. 13(a) and (b), the results of agglomerative clustering
of SOM of data set III using average and single linkage are
shown. The partitionings agree relatively well with the U-ma-
trix in Fig. 12(a).

The shape of Davies–Bouldin index plot of data set III in
Fig. 6(c) is somewhat similar to the one of data set II in Fig. 6(b).
However, there are negative peaks at 6, 10, and 23 clusters. In
Fig. 13(c) and (d), the partitioning of the SOM to 10 and 23
clusters is shown. It seems that compared with the U-matrix in
Fig. 12, both give reasonable interpretations of the SOM at two
accuracy levels.

G. Comparison with Direct Clustering

Computational Load:To estimate the computational load, the
execution times were measured. The tests were run in Matlab 5
environment in a SGI O2000 computer using one R10000 pro-
cessor and enough memory to avoid swapping. While the times
do not necessarily represent the true times when using optimized
compiled code, they give a fair indication of the relative load
of different algorithms. The computation times for SOM’s and
for dendrogram construction and-means partitioning to 2–30
clusters (each using 100 runs with different initializations) are
listed in Table III. The decrease in computation time is up to two
orders of magnitude for agglomerative clustering using average
linkage (e.g., 13 hours versus 10 min for data set III). For single
and complete linkage, the decrease is smaller but still remark-
able, especially for larger data sets (e.g., 27 versus 1 min for data
set I). Exact comparison with partitive clustering is more diffi-
cult since the number of-means runs plays a major role. Fur-

(a)

(b)

Fig. 12. (a) U-matrix and (b) Sammon’s mapping of the SOM of data set III.

thermore, the sequential SOM algorithm was used as opposed
to batch -means. If batch SOM algorithm had been used, the
SOM training times would have been much lower. However, for
the testing procedure, the saving was about one order of magni-
tude (e.g., 84 versus 7 min for data set I).

Clustering Accuracy:The clustering results were com-
pared using relative conditional entropy. Entropy quantifies the
amount of uncertainty present in the state of a variable or, in this
application, uncertainty of the cluster of the samples. Entropy
of a clustering is defined as ,
where is the probability of cluster, and is the number of
clusters in . The entropy gets its maximum value when
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(a) (b)

(c) (d)

Fig. 13. Partitioning of the SOM of data set III. (a) With agglomerative clustering using average linkage and (b) single linkage. (c) With partitive clustering using
10 and (d) 23 clusters.

each cluster is equally probable. Relative entropy is defined
and has values between . As an example,

a binary variable with probabilities
has relative entropies , respec-
tively. The entropy measure used in the tests was relative
conditional entropy , which describes uncertainty of
clustering if clustering is known

(7)

where and denote clusters, and and are the total
number of clusters in and , respectively.

In Table IV, the direct and SOM-based clustering results of
data set I are compared with the true known partitioning and
with each other. In general, the match is very good, although
the results are slightly worse for single and complete linkage.
Fig. 14 shows the comparison results for partitive clustering of
each data set and for agglomerative clustering of data set III.

TABLE IV
RELATIVE CONDITIONAL ENTROPIES FORDATA SET I. XXX IS THE TRUE

PARTITIONING OF THE DATA (OUTLIERS HAVE BEEN IGNORED), YYY IS THE

DIRECT PARTITIONING OF THE DATA, AND ZZZ IS THE PARTITIONING OBTAINED

BY CLUSTERING THESOM

In all cases, knowledge of the SOM clustering result has sig-
nificantly reduced the uncertainty. For data sets I and III, the
relative conditional entropies indicate a good correspondence
between the two clustering results, but for data set II, the results
are poor. However, there is a natural explanation. Because data
set II actually had no clusters, there is no reason why cluster
centers from different clustering runs would match each other,
especially with low number of clusters.
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(a) (b)

(c) (d)

Fig. 14. Results for partitive clustering of (a) data set I, (b) II (c) III and (d) agglomerative clustering of data set III. Dashed line isH (YYY ), dotted lineH (ZZZ),
and solid lineH (YYY jZZZ), whereYYY andZZZ are direct and SOM-based partitionings, respectively, with equal number of clusters. The agglomerative clustering in (d)
was obtained using complete linkage. Results for single and average linkage were similar. Partitioning was selected by simply cutting the dendrogram at a certain
level. From (d), the degrading effect of outliers on agglomerative clustering can be seen; the relative entropyH (YYY ) is very low when the number of clusters is
small. This is because vast majority of the samples belongs to a single cluster and only a few samples—the outliers—belong to the others. PartitioningZZZ based
on the SOM is much more evenly distributed.

In the light of these results, correspondence between direct
and two-level clustering can be considered acceptable.

V. CONCLUSIONS

In our earlier work, it has become obvious that the SOM is
an effective platform for visualization of high-dimensional data.
However, to be able to fully understand contents of a data set, it
is vital to find out if the data has cluster structure. If this is the
case, the clusters need to be extracted to be able to fully exploit
the properties of the data set by producing summary informa-
tion. For each cluster, not only means (or medians) and ranges
of single variables are interesting but also aspects like the fol-
lowing.

• Which variable(s) make the cluster different from the
neighboring clusters?

• Which factors make the cluster different from the rest of
the data?

• What is effective data dimension of the cluster?
• Is the cluster spherical or an outlier, and does it have sub-

clusters?
• What are the dependencies between variables in the clus-

ters?
The purpose of this paper was to evaluate if the data abstrac-

tion created by the SOM could be utilized in clustering of data.
The SOM as the first abstraction level in the clustering has some

clear advantages. First, the original data set is represented using
a smaller set of prototype vectors, which allows efficient use of
clustering algorithms to divide the prototypes into groups. The
reduction of the computational cost is especially important for
hierarchical algorithms allowing clusters of arbitrary size and
shape. Second, the 2-D grid allows rough visual presentation
and interpretation of the clusters.

In the experiments, agglomerative and partitive (-means)
clustering algorithms were run both directly for data and for
SOM trained using the data using three data sets. The experi-
ments indicated that clustering the SOM instead of directly clus-
tering the data is computationally effective approach. The clus-
tering results using SOM as an intermediate step were also com-
parable with the results obtained directly from the data.
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