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Clustering of the Self-Organizing Map

Juha Vesanto and Esa AlhonierSitudent Member, IEEE

Abstract—The self-organizing map (SOM) is an excellenttoolin ~ However, the visualizations can only be used to obtain
exploratory phase of data mining. It projects input space on pro- qualitative information. To produce summaries—quantitative
totypes of a low-dimensional regular grid that can be effectively descriptions of data properties—interesting groups of map units

utilized to visualize and explore properties of the data. When the -
number of SOM units is large, to facilitate quantitative analysis of must be selected from the SOM. The most obvious such a group

the map and the data, similar units need to be grouped, i.e., clus- iS the whole map. While its properties are certainly interesting,

tered. In this paper, different approaches to clustering of the SOM even more useful summaries can be prepared if the SOM (and
are considered. In particular, the use of hierarchical agglomerative ' thus the data) actually consist of two or more separate regions,
clustering and partitive clustering using k-means are investigated. and these are studied separately. Another option would be to

The two-stage procedure—first using SOM to produce the proto- id I its individuallv. but in th fal
types that are then clustered in the second stage—is found to per- e T o PO TR Epgearge

form well when compared with direct clustering of the data and to  mMap, this could result in far too many summaries. Thus, to

reduce the computation time. be able to effectively utilize the information provided by the
Index Terms—Clustering, data mining, exploratory data anal- SOM, methods to give good candidates for map unit clusters
ysis, self-organizing map. or groups are required. It should be emphasized that the goal

here is not to find an optimal clustering for the data but to
get good insight into the cluster structure of the data for data
mining purposes. Therefore, the clustering method should be
ATA mining processes can be divided to six sequentighst, robust, and visually efficient.

I. INTRODUCTION

iterative steps: The clustering is carried out using a two-level approach,
1) problem definition; where the data set is first clustered using the SOM, and then, the
2) data acquisition; SOM is clustered. The most important benefit of this procedure
3) data preprocessing and survey; is that computational load decreases considerably, making
4) data modeling; it possible to cluster large data sets and to consider several
5) evaluation; different preprocessing strategies in a limited time. Naturally,
6) knowledge deployment. the approach is valid only if the clusters found using the SOM

Each step is essential: The problem defines what data are ugggisimilar to those of the original data. In the experiments, a
and whatis a good solution. Modeling makes it possible to apgigmparison between the results of direct clustering of data and
the results to new data. On the other hand, data modeling withélitstering of the prototype vectors of the SOM is performed,
good understanding and careful preparation of the data leadg#fg! the correspondence is found to be acceptable.
problems. Finally, the whole mining process is meaningless if
the new knowledge will npt be u_seq [1]. _ _ Il. CLUSTERING

The purpose of survey is to gain insight into the data—possi-
bilities and problems—to determine whether the data are suffi- Definitions

cient and to select the proper preprocessing and modeling toolsy, clustering@ means partitioning a data set into a set of
Typically, several different data sets and preprocessing stradfrstersQ;, i = 1,---, C. In crisp clustering, each data
gies need to be co_nsidered. For t_his reason, efficient visualigg-mme belongs to exactly one cluster. Fuzzy clustering [4]
tions and summaries are essential. In this paper, we focusj@my generalization of crisp clustering where each sample has
clusters since the.y.are important chargctenzat_mns of_ data. 3 varying degree of membership in all clusters. Clustering

The self-organizing map (SOM) [2] is especially suitable fogan also be based on mixture models [5]. In this approach,
data survey because it has prominent wsuahzgﬂon propertigfe data are assumed to be generated by several parametrized
It creates a set of prototype vectors representing the data ggfributions (typically Gaussians). Distribution parameters are
and carries out a topology preserving projection of the protgstimated using, for example, the expectation-maximation al-
types from thed-dimensional input space onto a low-dimengorithm. Data points are assigned to different clusters based on
sional grid. This ordered grid can be used as a convenient ijeir probabilities in the distributions. However, neither fuzzy
sualization surface for showing different features of the SOMystering nor mixture models based clustering are considered
(and thus of the data), for example, the cluster structure [3]. i this study because the goal was to evaluate clustering of the

SOM using a few simple standard methods.
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TABLE |
WITHIN-CLUSTER DISTANCES S(Qr) AND
BETWEEN-CLUSTERSDISTANCES d(Q, Q1); @i, vy € Qr, 1 # ¢/,
x; € Qi k # 1. N |s THENUMBER OF SAMPLES IN CLUSTER (2. AND
¢, = 1/Ny EIier x;

Within-cluster distance S(Qr)
average distance S, = E—Ni—(lk,(—;:—fj"—”

nearest neighbor distance

centroid distance

S _ Xyming{|lxi—x ||}
nn = Ne

_ Z'Hxi Al
= T
Se = i

Between-clusters distance

A(Qr, Q)

single linkage
complete linkage
average linkage

centroid linkage

ds = min, ;{||x; — x|}

deo = max; ;{||x; — x;|}
ig %=

da — Z;, ka;\]l X

dee = |lck —ci|
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Fig. 1. Dendrogram of a set of 14 points in 1-D space. A partitioning can
be obtained by cutting the dendrogram at a certain level, for example, at the
level where there are only two clusters left, because there is a large jump in the
dendrogram. An alternative way is to cut the dendrogram at different level for
each branch.

in several ways; see Table I. The selection of the distance cri-

terion depends on application. The distance ngjri| is yet
another parameter to consider. In this paper, Euclidean n
is used because it is widely used with SOM. In addition, thq

k-means error criterion is based on it.

Many algorithms utilize local criteria in clustering data. FO{
example,S,,,, andd; in Table | are based on distance to neare

set. The clustering tree (dendrogram) can be utilized in interpre-

otrgﬁon of the data structure and determination of the number of

cClusters.

However, the dendrogram does not provide a unique clus-
?ring. Rather, a partitioning can be achieved by cutting the den-
rogram at certain level(s); see Fig. 1. The most typical solution

neighbor. However, the problem is that they are sensitive iasoto cut the dendrogram where there is a large distance between

noise and outliers. Addition of a single sample to a cluster ¢ n[] merged clusters. Unfortunately, this ignores the fact that the

radically change the distances [6]. To be more robust, the local; . ; . .
o ; within-cluster distance may be different for different clusters.
criterion should depend on collective features of a local data o€ .
. ) : . n fact, some clusters may be composed of several subclusters;
[7]. Solutions include using more than one neighbor [8] or . ; Lo
i . btain sensible partitioning of the data, the dendrogram may
weighted sum of all distances. It has been shown that the S R/IO .

. S ave to be cut at different levels for each branch [10]. For ex-
algorithm implicitly uses such a measure [9]. . )
ample, two alternative ways to get three clusters are shown in
Fig. 1.

_ _ Partitive clustering algorithms divide a data set into a number
~The two main ways to cluster data—make the partpf clusters, typically by trying to minimize some criterion or
tioning—are hierarchical and partitive approaches. Thgror function. The number of clusters is usually predefined,
hierarchical methods can be further divided to agglomeratiygt it can also be part of the error function [11]. The algorithm
and divisive algorithms, corresponding to bottom-up angbnsists of the following steps.
top-down strategies, to build a hierarchical clustering tree. Of
these agglomerative algorithms are more commonly used tha
the divisive methods and are considered in this paper.
Agglomerative clustering algorithms usually have the fol-
lowing steps:

B. Algorithms

rl) Determine the number of clusters.

2) Initialize the cluster centers.

3) Compute partitioning for data.

4) Compute (update) cluster centers.

5) If the partitioning is unchanged (or
the algorithm has converged), stop; oth-
erwise, return to step 3.

1) Initialize: Assign each vector to its
own cluster.

2) Compute distances between all clus-
ters.

3) Merge the two clusters that are
closest to each other.

4) Return to step 2 until there is only
one cluster left.

If the number of clusters is unknown, the partitive algorithm
can be repeated for a set of different number of clusters, typi-
cally from two toy/N, whereN is the number of samples in the
data set. An example of a commonly used partitive algorithm is
the k-means, which minimizes error function

C
E=> > lz—al? (1)

k=1 ZLcQy

In other words, data points are merged together to form a clus-
tering tree that finally consists of a single cluster: the whole data



588 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 11, NO. 3, MAY 2000

Abstraction level 1 Abstraction level 2 TABLE I
TRAINING PARAMETERS OF THESOM'S. PARAMETERS 071 (0) AND 02(0) ARE

O INITIAL NEIGHBORHOODWIDTHS FOR THEROUGH AND FINE-TUNING PHASES
U RESPECTIVELY. LAST COLUMN CONTAINS THE TOTAL TRAINING TIME

data set map size 01(0) 02(0) elapsed time

I 19 x 17 10 2 45 s
I 16 x 13 8 2 20 s
N samples M prototypes C clusters III 24 % 19 12 9 569 s
Fig. 2. First abstraction level is obtained by creating a set of prototype vectors
using, e.g., the SOM. Clustering of the SOM creates the second abstraction level. TABLE IlI

EXECUTION TIMES OF DIFFERENT PARTITIONINGS. TIMES FOR k-MEANS

where C is the number of clusters, angl, is the center of ARE FOR29 PRRTITIONINGS £ = 2, - -, 30 USING 100 RUNS WiTH
' ; DIFFERENT INITIALIZATIONS . COMPUTATION TIMES FOR CONSTRUCTING THE

clusterk. SOM'’s ARE SHOWN IN THE FIRST COLUMN
Partitive methods are better than hierarchical ones in the sens=

that they do not depend on previously found clusters. On th data set liS;EEe Cﬁglggze ?ivnel::gg: ({“(')r(')liizz)
other hand, partitive methods make |mpI|'C|t assgmptlons on th I > min 27 min 10T 84 min
form of clusters. For examplé;-means tries to find spherical I 23 min  2.3min 94 min 32 min
clusters. 111 32h 31h 13h 9.0 h
To select the best one among different partitionings, eacl SOM of 1 195 19s 5.5 6.7 min
of these can be evaluated using some kind of validity index (45 s)
Several indices have been proposed [6], [12]. In our simula SOMof Il 1.2 12s 3.1s 3.8 min
tions, we used the Davies—Bouldin index [13], which uSgs (20's) .
SOM of III 11s 11s 19s 10 min

for within-cluster distance antl.. for between clusters distance.

According to Davies—Bouldin validity index, the best clustering (9.5 min)

minimizes
c ones—become intractably heavy. For this reason, it is conve-
1 Z max {Sc(Qk) + SC(QI)} (2) nient to cluster a set of prototypes rather than directly the data
C el i#£k dce(Qk7 Ql) [15]

Consider clusteringV samples using-means. This involves

Wh'?rslc ifs the nlumtk')er %;clusters. ThstpayiesEBouldin.itnd_ex ihaking several clustering trials with different values fofThe
suitable for evaluation a-means partitioning because it give ; ity i ; max
low values, indicating good clustering results for spherical clu§1$;tzilggsgi?gjp:§§mziE{?ﬁ%gg?i;%ﬁ?erg \I;\}r\:\g;]e;iet of
ters. prototypes is used as an intermediate step, the total complexity

Many clustering methods, for example, agglomerative clugs proportional taVM + 3, Mk, whereM is the number of
tering using the complete linkagk,, require the clusters to beprototypes. WithC,.... = v'N andM = 5v/N, the reduction
compact and well separated. In real data, this is rarely the CaScomputational load is aboufN /15, or about six-fold for
Rather, the gaps between clusters are obscured by noise, the. 14000, Of course, this is a very rough estimate since many
clusters overlap, and there are outliers. When the data set Siz‘?)i%fctical considerations are ignored.
creases, computational load also becomes a problem, especially,g reduction is even greater for agglomerative algorithms
if some_of the distance measures or indices are computationallyce they cannot start frol{V but have to start withV clus-
expensive, like average distan§g and average linkagé, . ters and work their way down from there. If agglomerative clus-
tering is used during the second step, the two-level strategy is
a way to use partitive clustering to avoid tha¥e— 5v/ first

The approach used in this paper (clustering of the SOM ratteteps. Table Il shows computation times for both direct and
than clustering the data directly) is depicted in Fig. 2. First,tavo-level clustering strategies in our experiments. Even with
large set of prototypes—much larger than the expected numbieese relatively small data sets, the difference is remarkable es-
of clusters—is formed using the SOM or some vector quanpecially in the agglomerative methods.
zation algorithm. The prototypes can be interpreted as “proto-Another benefit is noise reduction. The prototypes are local
clusters,” which are in the next step combined to form the aaverages of the data and, therefore, less sensitive to random
tual clusters. Each data vector of the original data set belongv#iations than the original data. In [16], partitive methods
the same cluster as its nearest prototype. Similar multiple-leyeé., a small SOM) greatly outperformed hierarchical methods
approaches to clustering have been proposed earlier, e.g.inirclustering imperfect data. Outliers are less of a problem
[9]. While extra abstraction levels yield higher distortion, thegince—by definition—there are very few outlier points, and
also effectively reduce the complexity of the reconstruction taskerefore, their impact on the vector quantization result is
[14]. limited. On the other hand, this may also be a problem if the

The primary benefit of the two-level approach is the reductiaoutliers are actually the interesting areas. A recently proposed
of the computational cost. Even with relatively small number alustering method—Chameleon—also utilizes a two-level
samples, many clustering algorithms—especially hierarchicatategy to get more reliable estimates of cluster similarities [8].

C. Two-Level Approach
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Fig. 3. Different criteria for finding interesting cluster merges: Davies—Bouldin (left) and gap (right). Merge is interestind whéi + 52, whereS1 and
52 are within-cluster distances, adds the distance between clusters.

[ll. CLUSTERING OF THESOM borhood kernel value is one for the BMU and zero elsewhere,
o this leads to minimization of (1)—the SOM reduces to adaptive
A. SOM Training ) ) ~ k-means algorithm [18]. If this is not the case, from (6), it fol-
The SOM consists of a regular, usually two-dimensiongys that the prototype vectors are not in the centroids of their
(2-D), grid of map units. Each unit is represented by a\pronoi sets but are local averages of all vectors in the data set
prototype vectorm; = [m, ---, mia], Whered is input wejghted by neighborhood function values.
vector dimension. The units are connected to adjacent oneshe SOM algorithm is applicable to large data sets. The com-
by a neighborhood relation. The number of map units, whighiational complexity scales linearly with the number of data
typically varies from a few dozen up to several thousangammes, it does not require huge amounts of memory—ba-
determines the accuracy and generalization capability of tgi%ally just the prototype vectors and the current training
SOM. During training, the SOM forms an elastic net that fold$ector—and can be implemented both in a neural, on-line
onto the “cloud” formed by the input data. Data points lyingsaring manner as well as parallelized [32]. On the other hand,
near each other in the input space are mapped onto neaify complexity scales quadratively with the number of map
map units. Thus, the SOM can be interpreted as a topologyfits. Thus, training huge maps is time consuming, although
preserving mapping from input space onto the 2-D grid of M3Re process can be speeded up with special techniques; see,

units. S o for example, [33] and [34]. For example, in [33], a SOM with
The SOM s trained iteratively. At each training step, @ sampigijjion units was trained with 6.8 million 500-dimensional
vectorz is randomly chosen from the input data set. Distancggia vectors.

betweenz and all the prototype vectors are computed. The best-¢ desired, some vector quantization algorithm, ekgmeans,

matching unit (BMU), which is denoted here byis the map 4 he ysed instead of SOM in creating the first abstraction level.
unit with prototype closest to Other possibilities include the following.

||z — my|| = min{||z — m;|}. (3) « Minimum spanning tree SOM [19], neural gas [20],
' growing cell structures [21], and competing SOM'’s [22]
are examples of algorithms where the neighborhood rela-
tions are much more flexible and/or the low-dimensional
output grid has been discarded. Their visualization is

Next, the prototype vectors are updated. The BMU and its
topological neighbors are moved closer to the input vector in
the input space. The update rule for the prototype vector of unit

iis much less straightforward than that of the SOM.
mi(t + 1) = my(t) + ()i (¢) [z — ms(1)] 4) * In addition, several such growing variants of the SOM
have been proposed where the new nodes do have a well-
where defined place on low-dimensional grid, and thus, the visu-
t time; alization would not be very problematic [23]-[27].

a(t) adaptation coefficient;

X . . The SOM variants were not used in this study because we
hy:(t)  neighborhood kernel centered on the winner unit:

wanted to select the most commonly used version of the SOM.
However, the principles presented in this paper could naturally
b () — e — r;||? 5 be applied to the prototype vectors of these variants as well.
bilt) = exp 202(t) ®) The two-level approach in clustering can only work if the
prototypes reflect the properties of the data. The clusters found
using the prototypes should be similar to those that would have
been found directly from the data. In vector quantization, it has

There is also a batch version of the algorithm where the adapﬁ@-en shown that the density of the prototype vectors is propor-

tion coefficient is not used [2]. : d/(d+r) . .
; . . tiopal to const , Where is the probability den-
In the case of a discrete data set and fixed neighborhogd ¢ = +io (;)ijf)) of the inputzzj(:t)az i dirrilension yand’

kernel, the error function of SOM can be shown to be [17] is distance norm [28], [29]. For the SOM, connection between

wherer, andr; are positions of neuronsand: on the SOM
grid. Both «(¢) and o(t) decrease monotonically with time.

NM ) the prototypes and the p.d.f. of the input data has not been de-
E= Z Z hojllz: —my|l (6) rived in general case. However, a similar power law has been
=1 =1 derived in the 1-D case [30]. Even though the law holds only

whereN is number of training samples, aidd is the number of when the number of prototypes approaches infinity and neigh-
map units. Neighborhood kernkj; is centered at unit, which  borhood width is very large, numerical experiments have shown
is the BMU of vectorz;, and evaluated for unif. If neigh- that the computational results are relatively accurate even for a
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Fig. 4. lllustration of (a) data set |, (b) I, and (c) and Ill. Two-dimensional data set | is directly plotted in two dimensions, whereas data détarié pndjected
to the 2-D subspace spanned by the two eigenvectors with largest eigenvalues. The gray dots are data points, and the black crosses are psotdtifpe vector
SOM trained with corresponding data.

small number of prototypes [31]. Based on close relation bispection of the map. The most widely used methods for
tween the SOM and@-means, it can be assumed that the SOMsualizing the cluster structure of the SOM are distance matrix
roughly follows the density of training data when not only théechniques [35], [36], especially the unified distance matrix
number of map units but also the final neighborhood width afe)-matrix). The U-matrix shows distances between prototype

small, as was the case in our experiments. vectors of neighboring map units. Because they typically have
. similar prototype vectors, U-matrix is actually closely related
B. Visual Inspection to the single linkage measure. It can be efficiently visualized

An initial idea of the number of clusters in the SOM, asising gray shade [37]; see, for example, Figs. 7(a), 11(a), and
well as their spatial relationships, is usually acquired by visud2(a).
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Another visualization method is to display the number of
hits in each map unit. Training of the SOM positions interpo-
lating map units between clusters and thus obscures cluster bor- D
ders. The Voronoi sets of such map units have very few samples
(“hits™) or may even be empty. This information can be utilized S B
in clustering the SOM by using zero-hit units to indicate cluster
borders [38]. A
Generic vector projection methods can also be used. As op-
posed to the methods above, these are generally applicable to &
any set of vectors, for example the original data set. The high-di-
mensional vectors are projected to a low dimension so that inter-
sample distances are preserved as faithfully as possible. THig,5. High-level clusterA consists of subclusters and C' and a set of
the high-dimensional data set can be visualized while still prée_p_arate samples. The subcluster® andC’ represent focus on local details,
. . . ; . t in larger context, they, together wifh form the high-level clusted.
serving its essential topological properties. Examples of sucllj'm
nonlinear projection methods include multidimensional scaling
techniques [39], [40], Sammon’s mapping [41], and curvilineavhat by requiring a wider gap if the sample size is small.4 et
component analysis [42]. A special technique is to project ti a random sample of siz€, whose mean can be estimated
prototype vectors into a color space so that similar map units &« = E{z} = > x/N. Itis easy to show that its variance
assigned similar colors [43], [44]. is Var{} = Var{z}/N. In many distribution models—for
Of course, based on the visualization, one can select clustexemple, the gamma distribution—the variance is directly
manually. However, this is a tedious process and nothing gugroportional to expectation Vae} = a; E{x}. Therefore, let
antees that the manual selection is done consistently. Insteéaf{,:} = aiE{z}/N. Now, letx be the distance between

automated methods are needed. each sample and its nearest neighbor in cluggiof size vV,
samples. A robust upper limit for nearest neighbor distance
C. SOM Clustering Snn(Qk) can be acquired by, (Qr) = E{z} + aVar{z} =

_ _ _ CE{z} 4+ asan E{z}/Ni, = E{z}(1 + a/Ny). In order to make

In agglomerative clustering, the SOM neighborhood relatiofsg the between-clusters distank€Q;., Q;) more robust, the
can be used to constrain the possible merges in the construcii$bn of four shortest distances between the samples can be
of the dendrogram [45]. In addition, knowledge of interpolatingsed instead of only the shortest distance.
units can be utilized both in agglomerative and partitive clus- The pruning produces a more clear dendrogram but still does
tering by excluding them from the analysis. If this is used tQyot provide a unique partitioning. This is not a problem if the
gether with the neighborhood constraint in agglomerative clugpjective is only to find a set of interesting groups. If necessary,
tering, the interpolative units form borders on the map that thgfin g partitioning can be selected by hand using some kind of
construction of the dendrogram must obey. It may even be thafaractive tool [10]. By viewing the clustering hierarchy down
the interpolating units completely separate some areas from i top, one can concentrate on the big, firmly separated clus-
rest of the map. ters and discard the low-level groups. In our experiments, how-

The dendrogram of a map withl units containg/ — 1 dif-  ever, an automated procedure for finding the partitioning from

ferent nonsing|et0n CIUSterS, which is far too many to faCiIitaﬁ_ﬁe dendrogram was used; see Section IV-C for details.
summarization. Additionally, most of these clusters are com-

pletely uninteresting: Many of them differ only by addition of a
single or a few map units. Therefore, the dendrogram has to be IV. EXPERIMENTS
pruned. The objective is to find the interesting groups. This c%n D
) . Data Sets
be done by testing for each merge of the dendrogram whether _ o
the involved clusters are sufficiently different from each other. In the experiments, one real-world and two artificial data sets
If they are, both are added to the list of interesting groups. I#ere used. Plots of the three data sets are presented in Fig. 4.
teresting merges can be defined, for example, as follows (sees Data set | (“clown”) consisted of 2220 2-D samples. The

Fig. 3). data set had the following seven clusters:
« The Davies—Bouldin index (2) can be calculated for the * cluster with three subclusters (right eye);
two clusters. If the index is greater than one, there is an * spherical cluster (left eye);
interesting merge. « elliptical cluster (nose);
« If the gap between the two clustets(Qy, ;) is greater « nonspherical cluster (U-shaped: mouth);
than the sum of mean distances between points in the two * large and sparse cluster (body).

clustersS,,,, (Qr)+5..(Q1), thereis an interesting merge.In addition, some outliers were added to see how they affect the

To be able to evaluate the criteria above, all singleton clustéigstering. As it happens, the outliers are mostly concentrated
have to be ignored. on the left and seem to form a cluster of their own.

Note that the distance measures used in the gap criterion ares Data set Il was generated to see how the algorithms per-
very sensitive to noise, especially if the number of samplesina form when there is only one cluster: a spherical Gaussian
cluster is small. However, the problem can be alleviated some- distribution in eight dimensions (1000 samples).
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Fig. 6. Davies—Bouldin index for partitive clustering of data sets I-lll (a)—(c) as function of the number of clusters. In each plot, the numbersfigiss
on horizontal axis, and Davies—Bouldin index values lie on the vertical axis. Clustering results for the data are marked by solid line and respltstédype
vectors of the SOM by dashed line, respectively.

« Data set Il consisted of 4205 75-D samples of the techeighborhood width decreased linearly to 1; the neighborhood
nology of pulp and paper mills of the world [46]. function was Gaussian [see (5)]. The training length of the two
Especially in data set llI, the original variables had very difthases were 3 and 10 epochs, and the initial learning rates 0.5
ferent scales. Therefore, as part of preprocessing, all variabisl 0.05, respectively. The learning rate decreased linearly to
in each data set were linearly scaled to have zero mean and @gho during the training.

variance. The prototype vectors of the SOM’s have been superimposed
on the plots of the data sets in Fig. 4. Note that the prototype
B. SOM’s vectors are well within the data sets and that this has removed

A SOM was trained using the sequential training algorithf0St of the effect of outliers in data set | [Fig. 4(a)].
for each data seét.All maps were linearly initialized in the )
subspace spanned by the two eigenvectors with greatest eidenClustering
values computed from the training data. The maps were trained~or each SOM, a visual inspection was performed. Then, ag-
in two phases: a rough training with large initial neighborhooglomerative and partitive clustering algorithms were applied.
width and learning rate and a fine-tuning phase with small iniAap units with empty Voronoi sets were excluded from the anal-
tial neighborhood width and learning rate; see Table Il. Thesis. The neighborhood relations were not used.
N . _ Inthe agglomerative clustering, single, average, and complete
In the SOM training, freely available Matlab package SOM Toolbox w:

used. For more information, see URL http://www.cis.hut.fi/projects/soréwaf'-r'ka_-ges Were.used in the C_OnStrfJCtion phase. Th? pruning was
toolbox/. carried out using gap criterion withh = 3 (see Section 1lI-C).
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1 L
E‘II:
XXX XXX

(b) ’
Fig. 7. (a) U-matrix and (b) prototype vectors of the SOM of data set I in input (b)

space. In the U-matrix, dark color indicates large distance between adjac'g 8. (a)Full dendrogram and (b) pruned dendrogram of the SOM of data set
map units and light color small distance, respectively. Data clusters have b? b

- . " ’ . e pruning is essential because it reduces the number of different clusterings
encircled in both figures, and the corresponding ones have been given the s, €. ‘easonable level
labels. The interpolating map units have been marked with “X"s. Note that the ’

interpolating map units completely separate the two outliers (“O1” and “O2")
from the rest of the map.

prototypes, using = 3 resulted in hundreds of small clusters.

_ _ _ _ _ For data set Iz = 30 gave reasonable results and was used
Excluding the interpolating units proved to be very importantor comparison. For data sets Il and lIl, the gap criterion did not

if this was not done, the interpolating units blurred out the gapgrk at all. Instead, the comparisons in Section IV-G were done
that the criterion was trying to detect. based on partitionings done by simply cutting the dendrograms
As mentioned earlier, the list of interesting clusters does ngt certain level.
give a specific partitioning. Looking at the pruned list down The partitive clustering of both SOM’s and the data sets was
from top, the clusters form a hierarchy where each high-levghrried out using batch-means algorithm. Becaugemeans
cluster consists of some low-level clusters and a set of separgtgensitive to initialization, it was run 100 times for eakch
samples, see Fig. 5. The final partitioning was done by the fiith different random initializations. The best partitioning for
lowing procedure. each number of clusters was selected using error criterion in
1) A parent cluster was used if the subclusters represen{&)l Another possibility would have been to use some annealing
less than half of its samples. Otherwise, the parent clustechnique to better avoid local minima of the error function
was ignored, and the subclusters were used instead. [47]-[49].
2) Allremaining units (interpolative as well as those ignored To select the best clustering among the partitionings with dif-

above) were partitioned to nearest cluster. ferent number of clusters, the Davies—Bouldin validity index (2)
3) Each sample in the original data was partitioned to thveas used. In practice, though, it is better to use the index values
same cluster as its BMU. as a guideline rather than absolute truth. As seen in Fig. 6, the

Applying the same agglomerative clustering procedure dirdex plots have several local minima. Each sharp local min-
rectly to the data proved to be problematic. Because the origifralum in the validity index plot is certainly worth a look since it
data sets were both much bigger and more noisy than the SOM
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Fig. 9. Results of agglomerative clustering of the SOM of data set I. The interpolating units have been left out of the analysis. The pruned dendasd&m (
different clusters: Each node and leaf represents one “interesting” cluster. The same symbols have been used to indicate (b) cluster memapnshissiof m
the input space and (c) on the map grid.

indicates that the addition of one cluster enabled the algorithmAgglomerative Clusteringthe full and pruned dendrograms

to partition the data much better. of the SOM of data set | are shown in Fig. 8. The procedure
produced 15 interesting clusters, whose hierarchy is shown in
D. SOM of Data Set | Fig. 9(a). The final partitioning was based on the pruned dendro-

Visual Inspectionin Fig. 7, two visualizations of the SOM gram: the results, excluding the interpolating units, are shown in
of data set | are shown: the U-matrix and the map units in tfég. 9(b) and (c).
input space. Corresponding clusters in both figures have beerfhe result is satisfactory. In the final partitioning, all the
encircled and labeled. From the U-matrix, one can easily deriginal clusters have been found: even the three subclusters
tect seven distinct clusters, two of which (“*O1” and “O2") ar®f the right eye. However, there is one additional cluster in
very small and correspond to outliers. The interpolating unitse right eye, so the performance is not perfect. The right eye
are positioned neatly between the clusters, although only tteuses problems in the SOM-based approach because it is in
two outliers are completely separated from the rest of the m&m extreme corner of the data distribution and the amount of
There are also some interpolating units within the cluster cori@ata in that part of the input space is relatively small. If better
sponding to right eye (“E”), possibly indicating presence of twaccuracy is desired, a new clustering can be made using data
or more subclusters. Note that the relative size of the clusterdristhat area only. In addition, note that if the neighborhood
proportional to the number of samples in each cluster and not@nstraint had been used in clustering, the outlying map units
the radius of the cluster in the input space. would have formed two small clusters of their own because
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Fig. 10. Results of (a) partitive clustering of the data set | as well as (b) the corresponding SOM in the input space and (c) on the map grid.

they would have been completely separated from the rest oBoth clustering the data directly and clustering of prototype

the map. vectors using-means gave reasonable results, but the following
Partitive Clustering:According to the Davies—Bouldin index problems were observed.

in Fig. 6(a), the number of clusters is small, say, below ten. The « The three small clusters close to each other in the right

index computed from the clustering result of the data has aneg- eye were not discovered as separate clusters but as a single

ative peak at five clusters, whereas the corresponding index of cluster; as a matter of fact, they were not separated until

the prototypes of the SOM has similar peak at four clusters. Ac-  over 20 clusters were used (not shown).

tually, at all clusters below 15, there is one cluster shiftin the re- ¢ The nonspherical cluster could not be properly recognized

sults. The reason for this off-by-one observation is that the direct as one cluster.

clustering groups the outliers on the left to one cluster, whereBsth difficulties originate from properties of thé-means

the two-level approach joins them to the left eye cluster. Tha#gorithm: It not only seeks for spherical but also clusters with

clustering results using five clusters for the whole data and forgughly equal number of samples. Therefore, theneans

clusters for SOM are presented in Fig. 10. should never be blindly used to cluster any data without careful
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Fig. 11. Clustering of the SOM of data set Il. (a) U-matrix. (b) Sammon’s mapping. (c) Partitioning using agglomerative clustering. (d) Parttrappagtitive
clustering with four clusters. In the Sammon’s mapping, the map units have been indicated by circles and neighboring map units have been canhette to e

with lines.

verification of the results. It should also be noted that as tlotusters decreases, which makes algorithm more sensitive
number of clusters is increased, the number of samplestioutliers.
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E. SOM of Data Set Il

U-matrix and Sammon’s mapping of the SOM of data set |l .e
are presented in Fig. 11(a) and (b). According to them, there ar “# S5 L]
no clusters; neither visualization reveals any cluster structure & #3 ;
and there are only four interpolating units randomly positioned ®
around the map.

In Fig. 11(c), the partitioning obtained by the agglomerative
clustering is shown. The result is perfect; except for interpola-
tive units, which were left out of the analysis, all units belong to
the same cluster. In the partitive clustering, the Davies—Bouldir
index reduced to almost constant level as the number of cluste
centers increased; see Fig. 6(b). Even though this does not ii
dicate presence of only one cluster, it suggests that the data
somehow suspicious. Clustering the SOM of data set Il using
four clusters is shown in Fig. 11(d). As might be expected, the
clustering nicely splits the SOM into four parts which are almost
of equal size.

Grden Seges

F. SOM of Data Set Il

U-matrix and Sammon’s mapping of the SOM of data set IlI
are presented in Fig. 12. From the U-matrix, one can clearly “:
distinguish several—maybe about 20—separate areas. The in-
terpolating map units (marked by “X"s on the U-matrix) are
mostly positioned on the borders of the U-matrix. Sammon’s
mapping is badly folded, but in addition, there one can see se\
eral concentrations of points. The folding itself indicates that the
actual dimension of the data set is much higher than two, whicl
is the output dimension used in the projection.

In Fig. 13(a) and (b), the results of agglomerative clustering
of SOM of data set Ill using average and single linkage are
shown. The partitionings agree relatively well with the U-ma-
trix in Fig. 12(a).

The shape of Davies—Bouldin index plot of data set Il in
Fig. 6(c) is somewhat similar to the one of data set Il in Fig. 6(b). \
However, there are negative peaks at 6, 10, and 23 clusters. “%
Fig. 13(c) and (d), the partitioning of the SOM to 10 and 23 "
clusters is shown. It seems that compared with the U-matrix ir ‘
Fig. 12, both give reasonable interpretations of the SOM at twc ‘
accuracy levels.

@)

G. Comparison with Direct Clustering

Computational LoadTo estimate the computational load, the
execution times were measured. The tests were run in Matlab 5
environment in a SGI 02000 computer using one R10000 prla'g. 12. (&) U-matrix and (b) Sammon’s mapping of the SOM of data set Il.
cessor and enough memory to avoid swapping. While the times
do not necessarily represent the true times when using optimizkdrmore, the sequential SOM algorithm was used as opposed
compiled code, they give a fair indication of the relative loatb batchk-means. If batch SOM algorithm had been used, the
of different algorithms. The computation times for SOM’s an@OM training times would have been much lower. However, for
for dendrogram construction aidmeans partitioning to 2—30 the testing procedure, the saving was about one order of magni-
clusters (each using 100 runs with different initializations) atede (e.g., 84 versus 7 min for data set I).
listed in Table Ill. The decrease in computation time is up to two Clustering Accuracy:The clustering results were com-
orders of magnitude for agglomerative clustering using averagared using relative conditional entropy. Entropy quantifies the
linkage (e.g., 13 hours versus 10 min for data set IIl). For singéenount of uncertainty present in the state of a variable or, in this
and complete linkage, the decrease is smaller but still remasdpplication, uncertainty of the cluster of the samples. Entropy
able, especially for larger data sets (e.g., 27 versus 1 min for dafa clustering@ is defined as{(Q) = — Zf’zl p; log(p:),
set ). Exact comparison with partitive clustering is more diffiwherep; is the probability of clustef, andC is the number of
cult since the number df-means runs plays a major role. Fur€lusters in). The entropy gets its maximum valligs(C') when

(b)
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Fig. 13. Partitioning of the SOM of data set . (a) With agglomerative clustering using average linkage and (b) single linkage. (c) With psstéieglising
10 and (d) 23 clusters.

each cluster is equally probable. Relative entropy is defined TABLE IV

H, = H/log(C) and has values betwefn 1]. As an example RELATIVE CONDITIONAL ENTROPIES FORDATA SET I. X' IS THE TRUE
" & ) ' PARTITIONING OF THE DATA (OUTLIERS HAVE BEEN IGNORED), Y IS THE

a binary variable with probabilitigg = {0.5, 0.1, 0.02, 0.01}  pirecT PARTITIONING OF THE DATA, AND Z IS THE PARTITIONING OBTAINED
has relative entropied,, = {1, 0.47, 0.14, 0.08}, respec- BY CLUSTERING THESOM
tively. The entropy measure used in the tests was relative

conditional entropyH,.(X|Y"), which describes uncertainty of ;L‘Zt:gr;nl?nkage H'(‘)(())(zl:) Ha(())g|22) Ha(gilsz)
clusteringX if clusteringY is known single linkage 0.024 0.031 0.34
complete linkage  0.0098 0.14 0.28
k-means (k = 4) 0.22 0.22 0.029
H.(X|Y) = log Z P Z piy; log(pi;),  (7) bmeans (k=7) 012 012 0073

where¢ and j denote clusters, an@'x and Cy- are the total In all cases, knowledge of the SOM clustering result has sig-
number of clusters it andY’, respectively. nificantly reduced the uncertainty. For data sets | and Ill, the

In Table 1V, the direct and SOM-based clustering results oélative conditional entropies indicate a good correspondence
data set | are compared with the true known partitioning atween the two clustering results, but for data set Il, the results
with each other. In general, the match is very good, althoughe poor. However, there is a natural explanation. Because data
the results are slightly worse for single and complete linkageet Il actually had no clusters, there is no reason why cluster
Fig. 14 shows the comparison results for partitive clustering oénters from different clustering runs would match each other,
each data set and for agglomerative clustering of data set #specially with low number of clusters.
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Fig. 14. Results for partitive clustering of (a) data set I, (b) Il (c) lll and (d) agglomerative clustering of data set IIl. Dashedli(¥ is dotted lineH .(Z),

and solid lineH..(Y'|Z), whereY andZ are direct and SOM-based partitionings, respectively, with equal number of clusters. The agglomerative clustering in (d)
was obtained using complete linkage. Results for single and average linkage were similar. Partitioning was selected by simply cutting thendersdcegn

level. From (d), the degrading effect of outliers on agglomerative clustering can be seen; the relative Entpys very low when the number of clusters is
small. This is because vast majority of the samples belongs to a single cluster and only a few samples—the outliers—belong to the others. Pdditieting

on the SOM is much more evenly distributed.

In the light of these results, correspondence between diret#ar advantages. First, the original data set is represented using
and two-level clustering can be considered acceptable. a smaller set of prototype vectors, which allows efficient use of
clustering algorithms to divide the prototypes into groups. The
reduction of the computational cost is especially important for
hierarchical algorithms allowing clusters of arbitrary size and

In our earlier work, it has become obvious that the SOM ihape. Second, the 2-D grid allows rough visual presentation
an effective platform for visualization of high-dimensional dataand interpretation of the clusters.

However, to be able to fully understand contents of a data set, ifn the experiments, agglomerative and partitikenfeans)
is vital to find out if the data has cluster structure. If this is thelustering algorithms were run both directly for data and for
case, the clusters need to be extracted to be able to fully explthM trained using the data using three data sets. The experi-
the properties of the data set by producing summary informgrents indicated that clustering the SOM instead of directly clus-
tion. For each cluster, not only means (or medians) and rangesing the data is computationally effective approach. The clus-
of single variables are interesting but also aspects like the fedring results using SOM as an intermediate step were also com-
lowing. parable with the results obtained directly from the data.

» Which variable(s) make the cluster different from the

neighboring clusters?
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