
cHawk: An Efficient Biclustering Algorithm based on
Bipartite Graph Crossing Minimization

Waseem Ahmad
Department of Electrical and Computer

Engineering
University of Illinois
Chicago, IL, 60607

wahmad@acm.org

Ashfaq Khokhar
Department of Electrical and Computer

Engineering
University of Illinois
Chicago, IL, 60607

ashfaq@uic.edu

1. ABSTRACT
Biclustering is a very useful data mining technique for

gene expression analysis and profiling. It helps identify pat-
terns where different genes are co-related based on a subset
of conditions. Bipartite Spectral partitioning is a power-
ful technique to achieve biclustering but its computation
complexity is prohibitive for applications dealing with large
input data. We provide a connection between spectral par-
titioning and crossing minimization which is amenable to ef-
ficient implementations. Theoretical construction of Biclus-
tering model based on crossing minimization is provided.
Based on this model, an efficient biclustering algorithm,
which is termed as cHawk, is developed. We have evaluated
cHawk on both synthetic and real data sets. We show that
cHawk is able to identify, with good accuracy, constant, co-
herent and overlapped biclusters amid noise. Moreover, its
execution time grows linearly with input data size.

2. INTRODUCTION
Biclustering (Subspace Clustering) is a very useful tech-

nique for gene expression analysis and profiling. It has
gained increasing popularity in the analysis of gene expres-
sion data. Biclustering is significantly useful and consider-
ably harder problem than traditional clustering. Whereas a
cluster is a set of objects with similar values over the entire
set of attributes, a bicluster can be composed of objects with
similarity over only a subset of attributes. Euclidean Dis-
tance is a popular similarity function for clustering. How-
ever, it is known to suffer from curse of dimensionality .
When the dimensions increase, the similarity diffuses in all
attributes. Therefore, the distance between two records in
such cases becomes meaningless. For example, in text min-
ing, the size of keywords set describing different documents
is huge and yields sparse data matrix. In this case, clusters
based on entire keywords set may have no meaning for end
users.

Biclustering is an approach that finds local patterns where

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

a subset of objects might be similar to each other based on
only a subset of attributes. Note that biclusters can cover
just part of rows or columns and may overlap with each
other. Biclustering process can generate a wide variety of
object groups that capture all the significant correlation in-
formation present in a data set. For DNA microarray exper-
iments rows of the input matrix correspond to the genes and
columns correspond to the conditions. Since a bicluster can
identify patterns among a subset of genes based on a subset
of conditions, it therefore models condition-specific patterns
of co-expression. Moreover, biclustering can identify over-
lapping patterns thus catering to the possibility that a gene
may be a member of multiple pathways.

Biclusters can be categorized into following categories based
on the patterns exhibited by the underlying submatrices.

• Constant Biclusters: Constant Biclusters refer to
those biclusters which (1) exhibit same values over the
entire submatrix, (2) same values over only the rows
or (3) same values over the columns.

• Coherent Biclusters: Values over Rows and Columns
of Coherent Biclusters are either (1) offset by a con-
stant (additive coherent biclusters) or (2) offset by
some model generated values (model based coherent
biclusters).

Formally, the Biclustering problem can be defined as fol-
lows: ”Given a data matrix A with set of rows R and set of
columns C, identify a set of biclusters Bk = (Rk, Ck) where
Rk ∈ R and Ck ∈ C such that each bicluster Bk satisfies
some specific characteristics of homogeneity.”. Although bi-
clustering has been primarily used in biological data analy-
sis [9,16,5,4,24,18,26], its use in other domains such as the
word-document clustering in text mining [10] and for col-
laborative filtering in online recommendation systems [30,8]
has also gained momentum.

Spectral Partitioning is a popular technique for clustering
high dimensional data in different domains [29, 11]. It re-
quires computation of the second eigenvalue and correspond-
ing eigenvector, termed as Fiedler Vector, for the Laplacian
matrix of the input data. Computation of eigenvectors us-
ing techniques such as Singular Value Decomposition (SVD)
incurs a quadratic computation cost in terms of input data
size. Moreover it also requires random access to complete
data matrix. Such restrictions limit its use in applications
involving large input data sets.

In this paper, we provide a connection between bipartite
spectral partitioning and bipartite graph crossing minimiza-

tion. We note that computation of Fiedler vector can yield
a solution for the Linear Arrangement problem [19]. Linear
arrangement problem has been shown to provide bipartite
graph crossing minimization solutions which are within rea-
sonable bounds of the optimal solution [28]. This observa-
tion leads to the conclusion that crossing minimization can
be employed for bipartite spectral partitioning (clustering).
Crossing minimization has been extensively used in Graph
Drawing and in reducing the wiring congestion in VLSI cir-
cuit placement. Although it has been shown that optimal
crossing minimization is an NP-hard problem [13], exten-
sive research in this area has yielded efficient heuristics to
solve the crossing minimization problem with reasonable ac-
curacy. Computation complexity of most of these heuristics
is linear (or log-linear in some cases) with size of the input
matrix [20].

Based on the proposed model of biclustering based on
crossing minimization, we formulate the optimal biclustering
problem as ”maximal crossing minimization of the weighted
bipartite graph representing the input matrix”. This formu-
lation leads to a very efficient and accurate biclustering al-
gorithm which is termed as cHawk.

Our contributions, in this paper, are listed as follows.

• We provide a theoretical connection between spectral
partitioning and crossing minimization of a bipartite
graph. Using this connection, a Biclustering Model
based on Crossing minimization is proposed.

• An efficient implementation of the proposed model,
termed as cHawk, is provided. We use barycenter
heuristic [20] for solving the crossing minimization prob-
lem efficiently. Convergence of this heuristic was the-
oretically and experimentally proved in [20] [22]. We
note that crossing minimization reorders the vertices
on both layers of the bipartite graph such that ver-
tices belonging to the same bicluster are brought into
the vicinity of each other. This essentially reduces the
bicluster identification problem from a global search
to local search. Asymptotic complexity of barycenter
heuristic is only O(|E|+ |V |log|V |) where E is the set
of edges and V is the set of vertices in the input graph.

• An efficient algorithm for bicluster identification is pro-
posed. This algorithm employs local search and is ca-
pable of finding constant, coherent and overlapped bi-
clusters amid noise. The underlying similarity test is
done based on Bregman Divergence [21].

Our results show that the proposed crossing minimiza-
tion based approach is computationally very efficient. More-
over the proposed bicluster identification algorithm is robust
against noise and as our evaluation framework reveals, it
outperforms most biclustering algorithms in terms of accu-
racy and computational efficiency.

cHawk was implemented as part of Biclustering Analysis
Toolbox (BicAT) [27]. We have evaluated cHawk over S.
cerevisiae data set [14] against known results [1]. We also
evaluate the performance and accuracy of cHawk on syn-
thetically generated data sets. The evaluation results are
detailed in Section 7.

Organization: Rest of the paper is organized as follows.
We give an overview of related research work in Section 3.
Section 4 provides theoretical details on the construction of

the proposed biclustering model. Section 5 provides a ref-
erence implementation, termed as cHawk, of the proposed
model. Section 6 discusses the complexity of cHawk. Ex-
perimental framework is given in Section 7, conclusions are
drawn in Section 8.

3. RELATED WORK
Several approaches have been proposed for solving the bi-

clustering problem. A good discussion on many of these
algorithms can be found in [23]. For comparative analysis,
we have limited our focus to a selected set of algorithms
which are (1) popular in terms of citations and usage and
(2) are available in implemented form or can be easily im-
plemented for actual comparative analysis. Following is a
description of these selected algorithms.

Cheng and Church [9] define a bicluster to be a subma-
trix for which the mean squared residue score is below a
user-defined threshold δ, where 0 represents the minimum
possible value. They proposed a two-phase strategy: first,
rows and columns are removed from the original expression
matrix until the above constraint is fulfilled; later, previ-
ously deleted rows and columns are added to the resulting
submatrix as long as the bicluster score does not exceed δ.
This procedure is composed of several iterations and each
iteration is restricted to identification of only one bicluster
while previously defined biclusters are masked with random
values. Recently, Wang et al., [32] proposed an improved
version of this algorithm which avoids the problem of ran-
dom interference caused by masked biclusters. Problem with
mean squared residue criterion is that it is aimed at iden-
tification of constant biclusters and is unable to cater for
coherent biclusters. Moreover, it is not very robust against
noise [5,33]. On the other hand, our approach employs breg-
man distance as a similarity criterion which effectively han-
dles noisy data as shown in Section 7. We also use Manhat-
tan Distance for effective identification of coherent patterns.

Tanay et al., [6] presented SAMBA, a graph-theoretic ap-
proach to biclustering in combination with a statistical data
model. In Samba framework, expression matrix is modeled
as a bipartite graph, a bicluster is defined as a subgraph, and
a likelihood score is used in order to assess the significance
of observed subgraphs. A corresponding heuristic algorithm
is aimed at finding highly significant and distinct biclusters.
This approach is similar to ours as we also employ a bi-
graph representation of the input data. It should, however,
be noted that SAMBA’s time complexity is O(n2d) where n
is the number of vertices and d is the upper bound on the
degree of each vertex. This complexity which grows expo-
nentially with d would become non-polynomial for graphs
with arbitrarily large degree. As we show in Section 6, our
approach has complexity which is just proportional to the
size of the input data.

In Order Preserving Sub-matrix Algorithm (OPSM), by
Ben-Dor et al. [4], a bicluster is defined as a submatrix that
preserves the order of the selected columns for all of the
selected rows. In other words, the expression values of the
genes within a bicluster induce an identical linear ordering
across the selected samples. Based on a stochastic model,
the authors developed a deterministic algorithm to find large
and statistically significant biclusters. The time complexity
of this technique is O(nm3l) where n and m are the number
of rows and columns of the input data matrix respectively
and l is the number of biclusters. Since the time complexity

for this technique is cubic with regards to the number of
columns (dimensions) of the input matrix, it does not scale
well for high dimensional data sets.

Iterative Signature Algorithm (ISA) by Ihmels et al. [18]
considers a bicluster to be a transcription module, i.e., a set
of co-regulated genes together with the associated set of reg-
ulating conditions. Starting with an initial set of genes, all
samples are scored with respect to this gene set and those
samples are chosen for which the score exceeds a predefined
threshold. In the same way, all genes are scored regarding
the selected samples and a new set of genes is selected based
on another user-defined threshold. The entire procedure is
repeated until the set of genes and the set of samples con-
verge, i.e., do not change anymore. Multiple biclusters can
be identified by running the iterative signature algorithm
on several initial gene sets. This approach requires identi-
fication of a reference gene set which needs to be carefully
selected for good quality results. In the absence of pre-
specified reference gene set, random set of genes is selected
at the cost of quality of overall biclustering solution.

In xMotif biclustering framework proposed by Murali and
Kasif [24] biclusters are sought for which the included genes
are nearly constantly expressed across the selection of sam-
ples. In a first step, the input matrix is preprocessed by
assigning each gene a set of statistically significant states.
These states define the set of valid biclusters: a bicluster is
a submatrix where each gene is exactly in the same state
for all selected samples. To identify the largest valid bi-
clusters, an iterative search method is proposed that is run
on different random seeds, similar to ISA. This technique
identifies the largest bicluster with probability greater than

0.5 in time mn

log(1
α

)

log(1
β

)
where α > 0 and β < 1. This com-

plexity is at least
log(1

α
)

log(1
β

)
order more than the complexity

of our approach. Moreover, xMotif framework requires pre-
identification of the classes of biclusters present in the data
which does not suit many kinds of real life data sets.

Liu et al [33] recently proposed an algorithm, referred
to as RMSBE, which is claimed to find optimal bi-clusters
with the maximum similarity score. The algorithm works
for a special case, where the bi-clusters are approximately
squares. The algorithm requires multiple scans of the data
matrix for similarity score calculation, for reference gene
identification and eventually for bicluster identification. The
computational cost of the algorithm is O(nm(n + m)2) [33]
which is cubic in both n(rows) and m(columns). This is
around O(n + m)2 times more than the complexity of our
proposed approach.

The BiMax algorithm proposed by Prelic et al [5] focuses
on finding constant biclusters. They discretize the input
expression matrix into a binary matrix. This discretization
makes it harder to determine coherent biclusters.

It was proposed in [2] that crossing minimization can be
used as a recursive noise removal process leading to biclus-
tering. They provided no theoretical justification for this
hypothesis. Moreover, their approach employs a static dis-
cretization of the input data matrix which makes it hard to
identify coherent biclusters. Also, the proposed approach
in [2] lacks a quantitative approach for bicluster identifica-
tion.

Spectral partitioning based co-clustering(biclustering) al-
gorithm was proposed in [11]. The algorithm employs Sin-

gular Value Decomposition (SVD) for Fiedler vector compu-
tation. A generalized approach for K-way graph clustering
was presented in [15]. The computation cost of these algo-
rithms is at least quadratic with respect to the input data
size.

Dhillon et al in [17] gave an information theoretic biclus-
tering (Co-Clustering) algorithm. They treat the (normal-
ized) non-negative contingency table as a joint probabil-
ity distribution between two discrete random variables that
take values over the rows and columns. Their subsequent
work [3] provided a Bregman Divergence based loss func-
tion which was applicable to all density functions belonging
to the exponential family. Bregman Divergence is defined as
follows [21].

If f is a strictly convex real-valued function, the f -entropy
of a discrete measure p(x) ≥ 0 is defined by

Hf (p) = −
∑

x

(f(p(x))

and the Bregman divergence Bf (p; q) is given as

Bf (p; q) = −
∑

x

f(p(x))− f(q(x))−∇f(q(x))(p(x)− q(x))

(1)
When f(x) = x log x, Hf is the Shannon entropy and

Bf (p; q) is the I-divergence, when f(x) = − log(x) we get the
Burg entropy and discrete Itakura-Saito distortion Bf (p; q) =∑

x(log q(x)
f(x)

+ p(x)
q(x)

− 1)

4. CONSTRUCTION OF THE PROPOSED
BICLUSTERING MODEL

4.1 Preliminaries:
Throughout the paper, we denote a matrix by capital

boldface letters such as G,I etc. Vectors are denoted by
small boldface letters such as p and matrix elements are
represented by small letters such as wij . Also, we denote a
graph by G(V, E) where V is the vertex set and E is the edge
set of the graph. Moreover each edge, denoted by {i, j}, has
a weight wij . The adjacency matrix of G, denoted as G, is
defined as

G =

{
wij if there is an edge {i, j}
0 otherwise

}

In graph theory, a cut is a partition of the vertices of a
graph into two sets. Formally, for a partition of vertex set
V into two subsets S and T , a cut can be defined as follows

cut(S, T) =
∑

i∈S,j∈T

wij

Definition 4.1. Bipartite Graph: A graph G(V, E) is termed
as Bipartite if V = V0 ∪ V1 where V0 and V1 are the disjoint
sets of vertices (i.e. V0 ∩ V1 = φ) and each edge in E has
one end point in V0 and the other end point in V1.

We consider weighted bipartite graph G(V0, V1, E, W) with
W = (wij) where wij > 0 denotes the weight of the edge
{i, j} between vertices i and j. Moreover, wij = 0 if there
is no edge between i and j.

For microarray experiment data, genes and conditions are
represented by V0 and V1 vertex sets respectively. The edge

weight wij represents the response of i’th gene to j’th con-
dition. We transform the data so that each edge weight is
positive.

4.2 Spectral Clustering, Normalized Cut and
Fiedler Vector

It was shown in [11] that partitioning (clustering) of ver-
tices on one layer of the bipartite graph will induce a specific
clustering of vertices on the other layer which then itself in-
duces a new clustering on the first layer. This recursive
process would yield the ”best” clustering of vertices on both
layers when it corresponds to a partitioning of the graph
such that the crossing edges between partitions have mini-
mum weight. This essentially implies

cut(V01 ∪ V11, V02 ∪ V12, . . . , V0k ∪ V1k) =

minV1,V2,...,Vkcut(V1, V2, . . . , Vk)

where V1, V2, . . . , Vk is any partitioning of the overall Ver-
tex set V = V0 ∪ V1 into k vertex subsets. And V0k and V1k

denote the k’th subsets of the two groups of vertices in a
bipartite graph.

The minimum cut only considers external cluster connec-
tions and ignores the intra-cluster similarity which leads to
poor clustering. The poor results are because of its ten-
dency to trap in local minima. The solution is to employ
normalized cut instead. Minimum Normalized cut for two
partitions S and T can be defined as

Ncut(S, T)min =
cut(S, T)

vol(S)
+

cut(S, T)

vol(T)

Here vol(S) refers to the total weight of all edges originating
from group S. Normalized cut yields more balanced parti-
tioning.

It is well known that graph partitioning problem is NP-
complete [12]. Many heuristic methods exist that can find
the local minimum of the problem. Spectral graph parti-
tioning heuristics are known to perform well [11]. Following
is a brief introduction to the spectral partitioning heuristic.

Definition 4.2. Laplacian Matrix: The Laplacian ma-
trix LG of a Graph G is the matrix I(G)−A(G) where
A(G) is the adjacency matrix of the graph G and I(G) is
the diagonal matrix with vertex degrees on the diagonal, i.e.
ivv = dv and iuv = 0 if u 6= v

Given a bipartitioning of V into V1 and V2, a partition
vector, denoted by p is defined as follows

pi =

{
+1 i ∈ V1

−1 i ∈ V2

}

We can minimize the cut of the partition by finding a
non-trivial vector p that minimizes the function

f(p) =
∑

i,j∈V

wij(pi − pj)
2 = pTLGp

Observation 4.3. The Rayleigh Theorem shows that the
minimum value for f(p) is given by the second smallest
eigenvalue of the Laplacian LG. The optimal solution for
p is given by the corresponding eigenvector λ2, referred to
as the Fiedler vector. Thus spectral partitioning problem re-
quires calculation of the Fiedler vector.

4.3 Crossing Number and Linear Arrange-
ment Problem

Definition 4.4. Bipartite Drawing: A bipartite drawing
of G is the embedding of its vertex sets V0 and V1 onto dis-
tinct points on two horizontal lines y0, y1 respectively while
edges are drawn by straight line segments.

We will assume that y0 is the line y = 0 and y1 is the line
y = 1. Any bipartite drawing of G is identified by a coor-
dinate function h : V0 ∪ V1 → R where for any v ∈ V0 ∪ V1,
h(v) is the x-coordinate of the vertex v in the drawing. If
h is a coordinate function of a bipartite drawing, then the
permutations π0 and π1 are injective functions and deter-
mine the order in which vertices are placed on the lines y0

and y1 respectively.

Definition 4.5. Crossing Number: Let h be a bipartite
drawing of Bipartite graph G = (V0, V1, E). Let bcr(e) de-
note the number of crossings for an edge e = i, j with other
edges. Let bcr(h) denote the total number of crossings in h
i.e bcr(h) = 1

2

∑
e bcrh(e). The bipartite crossing number of

G denoted by bcr(G) is the minimum number of crossings
over all possible drawings of G i.e bcr(G) = minhbcr(h)

Definition 4.6. Linear Arrangement Problem: The lin-
ear arrangement problem is to find a bijective function f :
V → {1, 2, 3, . . . , | V |} of minimum length. This mini-
mum value is denoted by L(G) and its calculation is known
to be NP-hard [28]. If h is the bipartite drawing of G =
(V0, V1, E), then the length of h, denoted by Lh is defined as

∑
uv∈E

| h(u)− h(v) |

Claim 4.7. Linear arrangement and Spectral Partition-
ing problems are dual of each other and can be solved by
finding the Fiedler Vector of corresponding Laplacian ma-
trix.

Proof. In [19], a heuristic was proposed to solve the lin-
ear arrangement problem in polynomial time. This heuris-
tic solves the linear arrangement problem by computing
the corresponding eigenvector, termed as Fiedler vector, to
the second Laplacian eigenvalue λ2 of the Graph G. Re-
sults from [19] combined with Observation 4.3 prove the
claim.

Claim 4.8. Crossing minimization can be used to solve
the Linear Arrangement problem with accuracy guarantee of
O(log n) from the optimal value.

Proof. Shahrokhi et al. [28] provided a connection be-
tween crossing minimization and linear arrangement prob-
lem. They provided lower and upper bounds for bipartite
crossing number bcr(G) in terms of optimal arrangement
value. If dv denotes the degree of v, δG is the minimum
degree of G and ∆G is the maximum degree of G, then it
was shown that

1

36
δGL(G)− 1

12

∑
v∈V

d2
v ≤ bcr(G) ≤ 5∆GL(G)

In [28] a heuristic was proposed using the above result to
solve the crossing minimization in polynomial time with ac-
curacy guarantee of O(log n) from the optimal value based
on the condition that ∆G = O(δG)

Proofs of claims 4.7 and 4.8 provide a clear connection
between crossing minimization and spectral clustering prob-
lems. Spectral clustering solutions are based on finding the
Fiedler Vector (an eigenvector) of the Laplacian of the given
graph. Eigenvalues and their corresponding eigenvectors are
computed using techniques such as Singular Value decom-
position (SVD). These techniques have typically quadratic
complexity and require random access to complete data sets.
This complexity limits their effectiveness for processing very
large matrices.

To the best of our knowledge, proposed model is the first
to show that spectral clustering problem can be solved through
crossing minimization heuristics. Crossing minimization heuris-
tics have been a subject of research for many years and a
number of efficient solutions have been proposed to date [20],
[22]. The complexity of most of these heuristics is linear (or
log-linear in some cases) with the matrix size. This clearly
indicates that the proposed problem formulation can lead to
more efficient solutions for clustering problem.

In this paper, we make use of the proposed model to de-
velop an efficient biclustering solution, termed as cHawk.
Implementation details of cHawk are provided in next sec-
tion.

5. CHAWK IMPLEMENTATION
Gene microarray experiment data is usually very noisy

and contains missing values too. Therefore, accurate bi-
clustering requires conditioning of the experimental data to
reduce the effect of noise and cater for the missing values.

Missing value prediction has been taken up in great detail
in [25] and [31]. Since missing value prediction is out of scope
for this paper, we will rely on a simple approach whereby
each missing value is taken as zero. Similar approach was
used in [7].

Several techniques have been developed to cater for the
noise in data including those based on binning and regres-
sion. The approach used in cHawk is to employ the binning
method. According to this method, attribute values are par-
titioned into equal depth bins. The values within bins are
then smoothed by bin means. This is a simple yet effective
way of catering for the noise. More elaborate schemes for
noise removal are beyond the scope of this paper. Moreover
a joint probability distribution table is built during this pro-
cess. This table will be used for computing similarity based
on Bregman divergence during bicluster identification pro-
cess.

After the input data is properly conditioned, we then build
bipartite graph model of the data. Crossing minimization
heuristics are performed on this model to obtain biclusters.
After the crossing minimization, vertices on both layers of
the bipartite graph are reordered so that ”similar” vertices
are in the vicinity of each other. Bregman Divergence is then
employed as a similarity criterion in a local search based
bicluster identification algorithm to identify all significant
biclusters.

cHawk’s crossing minimization based biclustering approach
is composed of following steps.

• Construction of the Bigraph

• Bigraph Crossing Minimization

• Bicluster Identification

5.1 Construction of Bigraph
The cHawk algorithm takes the input matrix as adjacency

matrix. It then builds a bipartite graph (bigraph) represen-
tation of this matrix where rows are represented by Layer0
nodes and columns are represented by Layer1 nodes. There
is an edge between a node i at Layer0 and a node j at
Layer1 if corresponding matrix element i.e. wij is greater
than 0. If wij = 0 then there is no edge between node i
and node j. This essentially means that bigraph represen-
tation will ignore zero values which lends itself to efficient
implementations for sparse matrices. Figure. 1 illustrates
an example input matrix and its bipartite graph represen-
tation where Layer0 is represented by the bottom layer and
Layer1 is represented by top layer. Figure. 1(a) shows the
input matrix where each element is shown inside a box in
a grid. The color of this box is dependent on the value of
the matrix element. Figure. 1(b) shows the bipartite graph
representation of the input matrix. For tidiness, edges are
not labeled with their weights in Figure 1(b)

5.2 Bigraph Crossing Minimization Heuris-
tics

After construction of the bigraph, crossing minimization
heuristic is performed. Several heuristics for bigraph cross-
ing minimization have been proposed in the literature. There
are two phases of each heuristic, first is initial ordering and
the second is iterative improvement. Initial Ordering in-
volves some global computation on the graph to sequence the
nodes in each layer. The iterative improvement phase solves
a fixed layer problem on the alternating layers. The nodes
on one layer(say Layer0) are kept static and ordinal values
(x-coordinates on the plane) of the nodes on the other layer
(Layer1) are calculated as a function of the ordinal values
of its neighbor nodes on Layer0. This function varies from
heuristic to heuristic. The nodes on Layer1 are reordered
based on the new ordinal values. In the next step, nodes on
Layer1 are kept static and new ordinal values of nodes on
Layer0 are calculated. This process continues till there is no
further change in the ordinal values of any node on a layer.
By the end of crossing minimization step, we have essentially
reordered the input matrix such that all nodes with similar
neighbors and edge weights are brought together. Figure
1(c) shows the reordered matrix after crossing minimization
and Figure 1(d) presents the bipartite graph representation
of the reordered matrix. The rectangles with dashed lines
represent the biclusters.

The details of each phase involved in crossing minimiza-
tion are given below.

5.2.1 Initial Ordering
In their experimental evaluation, Stallman et al in [22] use

three types of initial orderings. These are random, breadth
first search (BFS) and guided breadth first search (GBFS).
Interested reader is referred to [22] for detailed discussion of
these techniques. For simplicity, cHawk considers random
initial ordering which has been shown to be very effective
while incurring minimal computation cost [22].

5.2.2 Iterative Improvement
As its name suggests, second phase – the iterative im-

provement – is used to iteratively minimize the crossings by
repeatedly applying a fixed layer heuristic alternating from
layer to layer. Median and Barycenter heuristics are the two

(a) The input matrix. (b) Bipartite Graph repre-
sentation of the input ma-
trix.

(c) Reordered matrix after
crossing minimization.

(d) Bipartite Graph rep-
resentation after crossing
minimization

Figure 1: Illustration of Crossing Minimization Pro-
cess for Biclustering

most popular heuristics applied towards iterative improve-
ment. A detailed description of these heuristics follows.

Median Heuristic: Median heuristic treats the neigh-
bors of each node as a set of integers representing their or-
dinal numbers on the opposite layer. Nodes are sorted using
medians of these sets as keys. Traditionally, the median is
defined as the mean of the two middle elements. The me-
dian heuristic which was evaluated in [22] always uses the
smaller of the two candidates, but with the added condition
that, in case of ties, nodes with odd degree always precede
those of even degree. Assuming random initial ordering and
a stable sort, the probability that the median heuristic em-
beds a simple path optimally is O(1

n
). It embeds a simple

cycle optimally every time.
Figure 2 illustrates the crossing minimization process based

upon median heuristic. For simplicity, we are considering
a binary matrix. Figure 2(a) shows the original bigraph.
Initial ordering is shown on top/bottom of the nodes in
top/bottom layer. For first iteration, upper layer is kept
static and positions of nodes in the bottom layer are changed
according to median Heuristic. According to this heuristic,
node W will get the new order 2 which is a median of rank
values (1, 2, 3) of its neighbors on the upper layer. Simi-
larly new ordering information will be assigned to remain-
ing nodes. This ordering information is used to calculate the
rank for the node among all nodes in the same layer. This
rank is used in subsequent iterations. Figure 2(b) shows the
new positions for nodes in the lower layer based upon the
median heuristic and Figure 2(c) shows the final bigraph
with reduced crossings. Note that the crossing number of
the graph based on new ordering has been reduced from 9
to 2 in just one iteration.

Note that Figure 2 illustrates only one iteration of an
actual crossing minimization step. Next step would be to
fix the lower layer and update the positions of the nodes in

the upper layer. This iterative process goes on till there is
no change in the node positions.

(a) Original Graph
G. Crossing
Number(C(G))= 9

(b) Updated Positions
of the lower layer
nodes with respect to
ranks of upper layer
neighbors

(c) Graph G′ after one
iteration of Median
Heuristic. C(G′) = 2

Figure 2: Illustration of Median Heuristic For Cross-
ing Minimization

Barycenter Heuristic : Barycenter heuristic assigns a
new rank to each node based on the mean of ranks of its
neighbor nodes. Median heuristic, on the other hand, em-
ploys median instead of mean. On graphs that are more
random and have several nodes of high degree, barycenter
does better than median in terms of crossing minimization.
Each iteration of the median heuristic can be implemented
in linear time, while one iteration of barycenter requires
O(|E| + |V |log|V |) time. For graphs with constant degree
bound, the barycenter heuristic can also be implemented in
linear time per iteration. Convergence of barycenter heuris-
tic was theoretically and experimentally proved in [20] [22].

Figure 3 shows the crossing minimization process based
on Barycenter Heuristic for the graph of Figure 3(a). Figure
3(b) shows the updated positions of the nodes in the bottom
layer based on Barycenter Heuristic. For example, Node W
is assigned a position 2 because the mean of its neighbors’
rank values (1, 2, 3) is 1+2+3

3
= 2. Similarly the ranks of

other nodes are also calculated. Figure 3(c) shows the Graph
after one iteration of Barycenter Heuristic. The number of
crossings after one iteration have been reduced to 2 from 9.

Our solution employs a weighted version of the Barycenter
heuristic in order to cater for the practical non-binary ma-
trices. Pseudocode for barycenter heuristic based crossing
minimization is given in Algorithm 1.

Let vi represent the i’th node in the non-static(dynamic)
layer and set Ni represent the set of neighbors of vi. Also
let rj represent the rank of j’th member of the set Ni. Then
new rank of vi, denoted as ri can be calculated as follows.

1. We first calculate the Weighted Mean, denoted as µ,
of the ranks of neighbor nodes using Equation 2.

2. These weighted means represent the new ordering of
the nodes. Since these means are not necessarily unique,
we adjust them so that each node is assigned a unique
rank based on its weighted mean.

s̃ =
∑

j∈Ni

wi,j × rj (2a)

s =
∑

j∈Ni

wi,j (2b)

µi =
s̃

s
(2c)

(a) Original Graph
G. Crossing
Number(C(G))= 9

(b) Updated Po-
sitions of Lower
Layer Nodes using
Barycenter Heuristic.

(c) Graph G′ af-
ter one iteration of
Barycenter Heuristic.
C(G′) = 2

Figure 3: Illustration of Barycenter Heuristic for
Crossing Minimization

5.3 Bicluster Identification
After crossings are minimized, we perform the bicluster

identification process. This process employs the joint proba-
bility distribution table built during the data pre-processing
stage. Algorithm for Bicluster Identification is given in Al-
gorithm 2.

Bicluster identification process starts from the first el-
ement of the reordered matrix and keeps on adding new
columns and rows while calculating and updating a score
representing the coherence of the values in the current block
of the reordered matrix. This coherence is determined by
virtue of two kinds of distance functions namely Bregman
Divergence and Manhattan Distance. Bregman Divergence

Algorithm 1 Crossing Minimization in a Bipartite Graph

Require: Bigraph BG
Ensure: An embedding of BG (new ordering of the nodes in the

two layers) which results in maximal crossing minimization
for BG.

1: positionChanged ⇐ 1
2: DynamicLayer ⇐ 1
3: while PositionChanged 6= 0 do
4: PositionChanged = 0
5: for all i such that vi belongs to the vertices(nodes) in the

Dynamic Layer do
6: Compute Weighted mean for vi using Equation 2
7: if Nodei.Rank 6= WeightedMean then
8: Nodei.Rank = WeightedMean
9: PositionChanged = PositionChanged + 1
10: end if
11: end for
12: Sort all the nodes in Dynamic Layer
13: Now adjust node ranks such that each node has a unique

rank
14: DynamicLayer = (1−DynamicLayer)
15: end while

is used to compare two rows over same set of columns. As
described earlier, we can use different functions in Bregman
Divergence Equation (Equation 1) to emulate Euclidean Dis-
tance, KL-Divergence and Itakura-Saito distortion [21]. Man-
hattan Distance is used to compare the values of adjacent
columns in the same row. Manhattan distance for two points
P1(x1, y1) and P2(x2, y2) in XY plane is given in Equation
3.

D(P1, P2) =| x1 − x2 | + | y1 − y2 | (3)

Manhattan distance is computed over edge weights wij and
bregman divergence is computed using joint probability dis-
tribution table as mentioned above. Manhattan distance is
simple to compute and works well in our case as we are us-
ing it to compare distance among columns of the same row
which are assumed to be identically distributed.

The bicluster identification procedure is a local search
procedure. We keep pointers StartRow and StartColumn
which are initialized to first row and column of the reordered
matrix respectively. Coherence score for adjacent rows is
calculated using Bregman Distance. Similarly the evolution
pattern over adjacent columns is determined using Manhat-
tan Distance. Our iterative procedure is row-major. We
compare two rows at one time to see if they have matching
columns. Starting with the StartRow and Startrow + 1,
we keep a reference set of matching columns. Columns are
added to this set if either of following two conditions is sat-
isfied.

1. Bregman Distance between two rows over same set of
columns is less than the given threshold δ

2. The manhattan distance between adjacent columns on
both rows is the same.

The first condition makes sure that we always identify the
constant value biclusters constrained by the noise. Second
condition, on the other hand, guarantees that we would be
able to determine the biclusters which exhibit coherent evo-
lution over current set of columns. For each subsequent row,
we find out that if it has the same coherent columns. If it
has, we add it to our row set. If any row has more co-
herent columns than the ones in reference set, we set the

OverlapF lag and store the current value of row iterator i in
StartRow and that of column iterator j to StartColumn.

If both of the above mentioned conditions fail, we call the
current submatrix a bicluster and continue with the Biclus-
ter identification process. The next iteration of the identifi-
cation process would start from StartRow and Startcolumn
if OverlapF lag was set otherwise it could continue with the
next value of row iterator till it reaches the last row. More-
over, when we reach the end of columns, we add the current
row to our current Row Cluster. If we reach the end of rows,
and current column and row clusters contain more than re-
quired minimum number of columns(Columnmin) and rows
(Rowmin) respectively, then we declare these row and col-
umn clusters to be a bicluster and add it to the Bicluster
set S.

Algorithm 2 Bicluster Identification

Require: Reordered Matrix M , A convex function f (required
for computing Bregman Distance), Dissimilarity threshold δ,
Minimum Rows in a Bicluster rowmin, Minimum Number of
Columns in a Bicluster Columnmin

Ensure: A set S of all interesting biclusters is returned.
1: StartRow ⇐ 1
2: StartColumn ⇐ 1
3: for all i : 0 → Rows− 1 do
4: for all j : 0 → Columns− 1 do
5: Calculate the Bregman Distance between Rows i and

i + 1 for the Columns Set 0 → j. Use Equation 1 and
the given function f to compute the value of Bregman
Distance.

6: Calculate Manhattan Distance, using Equation 3, be-
tween adjacent columns (j and j − 1) for Rows i and
i + 1

7: if Distance Calculated in Step 5 is less than δ OR Man-
hattan Distance calculated in Step 6 is the same for both
rows. then

8: if i = StartRow then
9: Add column j to current column cluster if its not

already contained in it.
10: end if
11: if (i = Rows− 2) and |RowCluster| > Rowmin and

|ColumnCluster| > Columnmin then
12: Declare current Row and Column Clusters as a Bi-

cluster and add it to S.
13: end if
14: If the Column is not contained in current Column

Cluster and i > StartRow, then we have potentially
overlapped biclusters.

15: OverlapF lag = True.
16: StartRow = i; StartColumn = j {We will start find-

ing biclusters from this row and column in the next
iteration of the identification process.}

17: if j ⇐ Columns− 1 then
18: Add Row i to current Row Cluster
19: end if
20: else if |RowCluster| > rowmin and

|ColumnCluster| > Columnmin then
21: Declare a bicluster Bix composed of current row and

column clusters. Add Bix to set of Biclusters S.
22: Empty the Row and Column Clusters.
23: if OverlapF lag = True then
24: i ⇐ StartRow
25: j ⇐ StartColumn
26: OverLapF lag ⇐ False
27: end if
28: end if
29: end for
30: end for
31: return S

6. COMPLEXITY ANALYSIS OF CHAWK
Lets assume that n =| V0 |= total number of rows of the

input data matrix, m =| V1 |= total number of columns of
the input matrix and Rc = average number of rows per bi-
cluster. Also Cc = average number of columns per bicluster
and C = total number of biclusters and k = average num-
ber of iterations of crossing minimization process. Now if
O(n) = time to compute weighted means and O(nlogn) =
time to perform sorting based on means and O(n) = time
taken in adjusting node positions. Also O(CRcCc) = time
to identify biclusters (when there is no overlap). In case
of overlapped biclusters, the bicluster identification process
would take O(dCRcCc) where d is the average degree of over-
lap among biclusters. Combining all of these components
would yield time complexity which is given as TcHawk =
O(k(n + nlog(n) + n)) + O(dCRcCc). Here, without loss
of generality, we can assume that O(dCRcCc) = O(dnm).
This implies that

TcHawk = O(k(n + nlog(n) + n)) + O(dnm)

We have noted that k is a fairly small number for most
cases. In fact, during all of our experiments the maximum
value that k took was 5. This implies that in the expression
for TcHawk, the term O(dnm) tends to dominate which es-
sentially means that proposed crossing minimization based
biclustering process has time complexity which has linear
relationship with the problem size given that the degree of
overlap remains constant.

7. EXPERIMENTAL FRAMEWORK

7.1 Experimental Setup
The proposed biclustering algorithm is implemented in

C++ and has been integrated with Java based BicAT [27]
using Java Native Interface (JNI)1.

The algorithm’s accuracy and performance was determined
using the gene expression data of S.cerevisiae provided by
Gasch et al. [14]. The dataset contains 2993 genes and 173
conditions. Evaluation of cHawk was also carried out on
synthetically generated data sets of larger sizes. The exper-
iments were performed on a Linux machine which is com-
posed of a 2.4 GHz Pentium4 processor with 512 MB RAM.
The operating system is Ubuntu Linux 6.10 and compiler
is the GNU gcc 3.3.6. In all the experiments the execution
time is reported in seconds. The execution time takes into
account the time spent in reading data from Files in the
process of initializing the structure.

7.2 Accuracy Evaluation
To evaluate the accuracies of different methods, we use

the measure (match score) similar to the score proposed by
Prelic et al. [5]and Liu et al [33]. Let M1, M2 be two sets
of bi-clusters. The match score of M1 with respect to M2
is given by

S(M1, M2) =
1

| M1 |
∑

A(I1,J1)∈M1

maxA(I2,J2)∈M2

| I1 ∩ I2 || J1 ∩ J2 |
| I1 ∪ I2 || J1 ∪ J2 |

Let Mopt denote the set of implanted bi-clusters and M
the set of the output bi-clusters of a bi-clustering algorithm.
S(Mopt, M) represents how well each of the true bi-clusters

1cHawk is available under GPL at
http://www2.uic.edu/~wahmad1/software/cHawk/

Method Parameter Settings

cHawk δ = 0.5, I = 5,Function=KL-Divergence
Samba D = 40, N1 = 4, N2 = 4, k = 20, L = 10
BiMax Minimum no. of genes and chips =4
ISA tg = 2, tc = 2, seeds = 100
CC δ = {0.5, 0.002}, α = 1.2
RMSBE α = 0.4, β = 0.5, γ = γe = 1.2
OPSM l = 100

Table 1: Parameter Settings for Different Bicluster-
ing Methods

is discovered by the bi-cluster algorithm. Our evaluation
methodology is to compare our algorithm with other algo-
rithms for two kinds of bi-clusters i.e. Constant Biclusters
and Coherent Biclusters. Other algorithms include CC [9],
Samba [6], ISA [18], RMSBE [33] and Bimax [5]. We used
the Biclustering Analysis Toolbox (BicAT) developed by
Barkow et al. [27] and EXPANDER developed by Shamir et
al. [26] for evaluation and bicluster visualization purposes.
CC, ISA and Bimax are implemented in BicAT. Samba is
implemented as part of EXPANDER and RSMBE imple-
mentation was downloaded from [34].

7.2.1 Evaluation for Constant Biclusters
In order to compare our algorithm with other programs

for constant bi-cluster data, we follow the approach used by
Liu et al. [33]. To cater for the missing values in real life
data, we add noise by replacing some elements in the matrix
with random values. There are three variables b, c and γ in
the generation of the bi-clusters. b and c are used to control
the size of the implanted bi-cluster. γ is the noise level
of the bi-cluster. The matrix with implanted constant bi-
clusters is generated with four steps: (1) generate a 100×100
matrix A such that all elements of A are 0s, (2) generate ten
10×10 bi-clusters such that all elements of the bicluster are
1s, (3) implant the ten bi-clusters into A without overlap,
(4) replace γ(100×100) elements of the matrix with random
noise values (0 or 1) . For each test on constant bi-clusters,
we generate 10 matrices and consider the average matching
scores of different biclustering methods on these matrices.

In the experiment, the noise level ranges from 0 to 0.25.
The parameter settings used for different bi-clustering meth-
ods are the default settings and are listed in Table1. The
results are shown in Figure. 4(a). In the absence of noise,
cHawk, ISA, Samba, Bimax and RMSBE can always find the
implanted bi-clusters correctly. As mentioned in [5], CC uses
the similarity of the selected elements as the bi-clustering
criterion. The criterion does not work for the constant bi-
cluster with only up-regulated values as is the case with cur-
rent scenario. When the noise level is high, cHawk, ISA and
RMSBE have the best accuracies. The normalization of the
data (in case of ISA) and data cleaning through binning (in
case of cHawk) is the main reason that these algorithms per-
form well on noisy data. The inclusion-maximal bi-cluster
model of Bimax is limited in finding error-free bi-clusters.
This model limits its performance on noisy data. The per-
formance of Samba is sensitive to the statistical significance
of the bi-clusters. When the noise level is high, the signif-
icance of the bi-clusters decreases rapidly. Therefore, the
performance of Samba is not good for noisy data.

7.2.2 Evaluation for Coherent Biclusters
For accuracy evaluation of Biclustering methods in find-

(a) Accuracy Evaluation for Constant Biclusters.

(b) Accuracy Evaluation for Coherent Biclusters.

(c) Accuracy Evaluation for Overlapped Biclusters

Figure 4: Results for Synthetic data sets

ing coherent biclusters, we randomly generate the values in
the 100×100 (background) matrix A such that the data fits
the standard normal distribution with the mean of 0 and the
σ of 1.2. This is the same approach for synthetic data gen-
eration as taken by Liu et al in [33]. To generate a coherent
b×c bi-cluster, we first randomly generate the matrix values
in a reference row (a1, a2, ..., ac) according to the standard
normal distribution. To get a row (ai1, ai2, ..., aic) in the co-
herent bi-cluster, we randomly generate a distance di (based
on the standard normal distribution) and set aij = aj+di for
j = 1, 2, ..., c. After we get the b× c coherent bi-cluster, we
can add some noise by randomly selecting δ.(b× c) elements
in the bi-cluster and changing the values to a random num-
ber (according to the standard normal distribution). Finally,
we insert the noisy coherent bi-cluster into the 100 × 100
background matrix A. For each test on coherent biclusters,
50 matrices are generated.

Parameters selection. Based on the simulation results,
we find that cHawk works well for a wide range of param-
eters settings and that Euclidean distance based coherence
score outperforms KL-divergence in case of overlapped bi-
clusters while KL-Divergence is better in case of Constant
and Coherent Biclusters. We recommend to use the fol-
lowing parameter settings: Function= Euclidean Distance
(Overlapped Biclusters) and KL-Divergence (Coherent Bi-
clusters). Now, we test different methods for coherent bi-
clusters. The discretization methods used by Samba and Bi-
max cannot identify the elements in the coherent bi-clusters.
Without reasonable discretized data, the two methods can-
not find the implanted coherent biclusters. Thus, the two
methods are not included in the comparison on coherent bi-
clusters. In the test on coherent biclusters, we compared
cHawk with RMSBE, ISA and CC. We generated the co-
herent bi-clusters of size 15 × 15 with different noise level
δ ∈ [0, 0.25]. The parameter settings of different methods
are listed in 1.

Figure 4(b) shows that cHawk has better accuracy than
CC and ISA on different noise levels and has a compa-
rable accuracy with RMBSE. ISA uses only up-regulated
and down-regulated expression values in its bi-clustering
method. When coherent bi-clusters contain elements of nor-
mal expression levels, ISA may miss some rows and columns
of the implanted bi-clusters. When the signal of the im-
planted bi-cluster is weak comparing with the background
noise of the whole matrix, the greedy method of CC may
delete some rows and columns of the implanted bi-cluster in
the beginning of the algorithms and miss the deleted rows
and columns in the output biclusters. RMBSE requires se-
lection of a reference gene for its accuracy. Their algorithm
tries to work with all genes as reference genes which make it
computationally very expensive but more accurate. On the
other hand, cHawk is much more computationally efficient
and yet very accurate.

Finding Overlapped Biclusters . To test methods with
overlapped biclusters, we first generate two b × b coherent
bi-clusters with o overlapped rows and columns. o is called
the overlap degree. Also, we replace δ fraction of the two bi-
clusters with random noise values and implant them into a
100×100 randomly generated matrix. The elements also fit
the standard normal distribution. To find overlapped biclus-
ters in a given matrix, some methods, e.g. CC, need to mask
the discovered bi-clusters with random values. Advantage
of the cHawk is that it does not need to mask discovered

bi-clusters. We test the accuracy of cHawk, RMSBE, CC
and OPSM on overlapped biclusters by using 20× 20 coher-
ent bi-clusters with noise level δ = 0.1 and overlap degree o
ranging from 0 to 10. The results in Figure. 4(c) show that
cHawk is only marginally affected by the overlap degree of
the implanted bi-clusters.

7.2.3 Accuracy Evaluation for Non-Contiguous Dis-
tributed Biclusters

So far, we have evaluated all methods for biclusters which
were all contiguously allocated in the input data matrix.
This does not capture the scenario in real data where bi-
clusters are non-contiguous and distributed all across the
matrix. For this set of experiments, we generated a 100×50
matrix and 10 biclusters of size 10× 5. But instead of plac-
ing these bicluster contiguously in the data matrix, we place
them in interleave fashion such that if first row belonged to
Bicluster 1, then the second one would belong to Bicluster2
and so on. Similarly, if first Column belonged to first Biclus-
ter then second one would belong to second bicluster and so
on. The purpose of implanting rectangular biclusters was to
determine if algorithms under investigation are capable of
handling non-square biclusters too. In practical scenarios,
it is quite common to have rectangular biclusters. Moreover,
rectangular biclusters are harder to find and provide a good
benchmark for determining the effectiveness of underlying
bicluster identification procedure.

cHawk was compared against RMSBE on this synthetic
data amid noise levels ranging from 0 to 2.5. The results are
shown in Figure 5. It is clear that cHawk maintains its accu-
racy even in this case while RMSBE’s accuracy deteriorates
significantly on this data set. The reason for this deterio-
ration of accuracy in case of RMSBE is that it is unable to
find rectangular biclusters accurately. It was also pointed
out in [33]. On the other hand, crossing minimization based
reordering approach employed by cHawk not only finds the
distributed patterns but is able to do so with high computa-
tional efficiency. Results on the computational performance
are presented at the end of this section.

Figure 5: Accuracy Comparison of cHawk and
RMSBE for Distributed Interleaved Biclusters.

7.2.4 Accuracy Evaluation for Real Data
In order to evaluate the proposed Biclustering algorithm

cHawk against other Biclustering methods on real data, we
follow the approach used by Prelic et al [5]. Their method
evaluated the discovered biclusters using Gene Ontology (GO)
annotations and protein-protein interaction networks for S.
cerevisiae and A. thaliana data sets. Here we present re-
sults for evaluation based on GO annotations. The idea
is to determine the enrichment level of discovered biclus-
ters by each method with respect to a specific GO provided
by Gene Ontology Consortium. Similar to Liu et al’s ap-
proach, we also use FuncAssociate to determine these en-
richment levels. The analysis is performed on the gene ex-
pression data of S.cerevisiae provided by Gasch et al [14].
The data set contains 2993 genes and 173 conditions. The
adjusted significance scores were calculated using FuncAsso-
ciate. These scores are represented in the graph of Figure.6.
The results for cHawk are compared against reported scores
of RMSBE, BiMax, OPSM, ISA, Samba and CC from [5]
and [33]. RMSBE and cHawk seem to outperform other
methods. RMSBE achieves this accuracy at a very high
computational cost. Apart from CC, other algorithms have
reasonably good performance. CC under-performs because
of its inability to find coherent biclusters and its lack of ro-
bustness against noise.

Figure 6: Proportions of Biclusters significantly en-
riched by Gene Ontology biological process cate-
gory(S.cerevisiae). α is the adjusted significance
scores of the biclusters.

7.2.5 Performance Evaluation of cHawk
As mentioned above, cHawk is designed to be computa-

tional efficient from the ground up. Our second set of exper-
iments were aimed at analyzing the performance of cHawk.
For this purpose, synthetic data sets with sizes ranging from
1000 rows to 200000 rows were generated. Implanted bi-
clusters were all of constant nature. RMSBE was originally
implemented in Java, for accurate performance comparison
we compared Java version of cHawk with RMSBE.

Figure 7 shows the performance of both cHawk and RMSBE
in terms of execution time for varying set of problem sizes.
In case of cHawk, we can see that execution time only in-
creases linearly with the problem size. This confirms our
complexity analysis done in Section 6. On the other hand,
the execution time for RMSBE increase at a much higher

rate. cHawk clearly outperforms RMSBE for all problem
sizes. In fact, cHawk runs approximately 10 times faster
than RMSBE. The reason for this performance difference is
that RMSBE is an exact algorithm. It first of all creates
a similarity matrix based on input matrix, then attempts
to find best suitable set of reference rows which can take
time in the order of number of rows in worst case. Given
that cHawk is comparable to RMSBE in accuracy, the per-
formance difference solidifies the practical useful nature of
cHawk.

Figure 7: Performance of cHawk and RMSBE with
increasing data sizes.

8. CONCLUSIONS
We have proposed to reformulate the optimal bicluster-

ing problem as ”optimal crossing minimization in the rep-
resentative bipartite graph”. We have provided a theoreti-
cal connection between crossing minimization and spectral
partitioning problems. Based on the new problem formula-
tion, an efficient and scalable biclustering algorithm is pro-
posed. Both accuracy and performance of the algorithm are
tested and verified for synthetic as well as practical data
sets. The experiments reveal that the algorithm not only
outperforms traditional biclustering approaches in terms of
execution time but also maintains good accuracy through-
out.

9. REFERENCES
[1] Gene Ontology Consortium (2000). Gene ontology:

tool for the unification of biology. Nat. Genet.,
25:25–29.

[2] A. Hussain A. Abdullah. A new biclustering technique
based on crossing minimization. Neurocomputing
Journal, 69:1882–1896, 2006.

[3] I. S. Dhillon A. Banerjee, S. Merugu and J. Ghosh.
Clustering with bregman divergences. Journal of
Machine Learning Research, 6:1705–1749, 2005.

[4] R. Karp A. Ben-Dor, B. Chor and Z. Yakhini.
Discovering local structure in gene expression data:
the order-preserving submatrix problem. In
Proceedings of the Sixth International Conference on
Computational Molecular Biology (RECOMB), pages
49–57, 2002.

[5] P. Zimmermann A. Wille P. Buhlmann W. Gruissem
L. Hennig L. Thiele E. Zitzler A. Prelic, S. Bleuler. A
systematic comparison and evaluation of biclustering
methods for gene expression data. Bioinformatics,
2006.

[6] M. Kupiec R. Shamir A. Tanay, R. Sharan. Revealing
modularity and organization in the yeast molecular
network by integrated analysis of highly heterogeneous
genomewide data. PNAS, 101(9):2981–2986, 2004.

[7] A. B. Tchagang A.H. Tewfik. Robust biclustering
algorithm (roba) for dna microarray data analysis. In
Proceedings of IEEE Workshop on Statistical Signal
Processing, 2005.

[8] Waseem Ahmad and Ashfaq Khokhar. An architecture
for privacy preserving collaborative filtering on web
portals. In The Third International Symposium on
Information Assurance and Security (IAS), 2007.

[9] Y. Cheng and G.M. Church. Biclustering of expression
data. In Proceedings of Intelligent Systems for
Molecular Biology, 2000.

[10] I. S. Dhillon. Co-clustering documents and words
using bipartite spectral graph partitioning. In
Proceedings of the Seventh ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining(KDD), 2001.

[11] Inderjit S. Dhillon. Co-clustering documents and
words using bipartite spectral graph partitioning. In
Knowledge Discovery and Data Mining, pages
269–274, 2001.

[12] Michael R. Garey and David S. Johnson. Computers
and Intractability; A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York,
NY, USA, 1990.

[13] M.R. Garey and D. S. Johnson. Crossing number is
np-complete. SIAM Journal on Algebraic and Discrete
Methods, 4:312–316, 1983.

[14] A.P. Gasch. Genomic expression programs in the
response of yeast cells to environmental changes. Mol.
Biol. Cell, 11:4241–4257, 2000.

[15] M. Gu, H. Zha, C. Ding, X. He, and H. Simon.
Spectral relaxation models and structure analysis for
k-way graph clustering and bi-clustering, 2001.

[16] Y. Guan H. Cho, I. S. Dhillon and S. Sra. Minimum
sum-squared residue co-clustering of gene expression
data. In Proceedings of the fourth SIAM International
Conference on Data Mining, pages 114–125, 2004.

[17] S. Mallela I. S. Dhillon and D. S. Modha.
Information-theoretic co-clustering. In Proceedings of
The Ninth ACM SIGKDD International Conference
on Knowledge Discovery and Data Miing (KDD),
pages 89–98, 2003.

[18] S. Bergmann J. Ihmels and N. Barkai. Defining
transcription modules using large-scale gene expression
data. Bioinformatics, 20(13):1993–2003, 2004.

[19] Martin Juvan and Bojan Mohar. Optimal linear
labelings and eigenvalues of graphs. Discrete Appl.
Math., 36(2):153–168, 1992.

[20] S. Tagawa K. Sugiyama and M. Toda. Methods for
visual understanding of hierarchical system structures.
IEEE Transaction on Systems, Man, and Cybernetics,
11(2):109–125, 1981.

[21] J. Lafferty, S. Pietra, and V. Pietra. Statistical
learning algorithms based on bregman distances. In
Proceedings of the Canadian Workshop on
Information Theory, 1997., 1997.

[22] F. Brglez M. Stallmann and D. Ghosh. Heuristics and
experimental design for bigraph crossing number
minimization. Goodrich and McGeoch, editors,
Algorithm Engineering and Experimentation, LNCS
1619:74–93, 1999.

[23] S. C. Madeira and A. L. Oliveira. Biclustering
algorithms for biological data analysis: A survey.
IEEE/ACM Transactions on Computational Biology
and Bioinformatics, 1, 2004.

[24] T.M. Murali and S. Kasif. Extracting conserved gene
expression motifs from gene expression data. In
Proceedings of the 8th Pacific Symposium on
Biocomputing.

[25] Patrick O. Brown Orly Alter and David Botstein.
Singular value decomposition for genome-wide
expression data processing and modeling. PNAS,
97:10101 – 10106, Aug 2000.

[26] A. Maron-Katz R. Sharan and R. Shamir. Click and
expander: A system for clustering and visualizing gene
expression data. Bioinformatics, 19(14):1787–1799,
2003.

[27] A. Prelic P. Zimmermann S. Barkow, S. Bleuler and
E. Zitzler. Bicat: a biclustering analysis toolbox.
Bioinformatics, 22(10):1282–1283, 2006.

[28] Farhad Shahrokhi, Ondrej Sýkora, László A. Székely,
and Imrich Vrto. On bipartite drawings and the linear
arrangement problem. SIAM Journal on Computing,
30(6):1773–1789, 2001.

[29] Jianbo Shi and Jitendra Malik. Normalized cuts and
image segmentation. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 22(8):888–905,
2000.

[30] S. Merugu T. George. A scalable collaborative filtering
framework based on co-clustering. In Proceedings of
the Fifth IEEE International Conference on Data
Mining, 2005.

[31] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown,
T. Hastie, R. Tibshirani, D. Botstein, and R. Altman.
Missing value estimation methods for dna
microarrays. Bioinformatics, 2001.

[32] Haixun Wang and Philip Yu. δ-clusters: Capturing
subspace correlation in a large data set. In Proceedings
of the 18th IEEE International Conference on Data
Engineering, pages 517–528, 2002.

[33] L. Wang X. Liu. Computing the maximum similarity
bi-clusters of gene expression data. Bioinformatics,
23(1):50–56, 2007.

[34] L. Wang X. Liu. Msbe software download.
http://www.cs.cityu.edu.hk/ liuxw/msbe/help.html,
2007.

