
Solving Cluster Ensemble Problems by Bipartite Graph Partitioning

Xiaoli Zhang Fern xz@ecn.purdue.edu
Carla E. Brodley brodley@ecn.purdue.edu

School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

Abstract

A critical problem in cluster ensemble re-
search is how to combine multiple cluster-
ings to yield a final superior clustering re-
sult. Leveraging advanced graph partitioning
techniques, we solve this problem by reduc-
ing it to a graph partitioning problem. We
introduce a new reduction method that con-
structs a bipartite graph from a given cluster
ensemble. The resulting graph models both
instances and clusters of the ensemble simul-
taneously as vertices in the graph. Our ap-
proach retains all of the information provided
by a given ensemble, allowing the similarity
among instances and the similarity among
clusters to be considered collectively in form-
ing the final clustering. Further, the resulting
graph partitioning problem can be solved effi-
ciently. We empirically evaluate the proposed
approach against two commonly used graph
formulations and show that it is more ro-
bust and achieves comparable or better per-
formance in comparison to its competitors.

1. Introduction

Clustering for unsupervised data exploration and anal-
ysis has been investigated for decades in the statistics,
data mining, and machine learning communities. A
recent advance of clustering techniques is the develop-
ment of cluster ensemble or consensus clustering tech-
niques (Strehl & Ghosh, 2002; Fern & Brodley, 2003;
Monti et al., 2003; Topchy et al., 2003), which seek
to improve clustering performance by first generating
multiple partitions of a given data set and then com-
bining them to form a final (presumably superior) clus-
tering solution. Such techniques have been shown to
provide a generic tool for improving the performance
of basic clustering algorithms.

Appearing in Proceedings of the 21 st International Confer-
ence on Machine Learning, Banff, Canada, 2004. Copyright
2004 by the authors.

A critical problem in designing a cluster ensemble sys-
tem is how to combine a given ensemble of cluster-
ings in order to produce a final solution, referred to
as the cluster ensemble problem here. In this paper
we approach this problem by reducing it to a graph
partitioning problem. In graph partitioning, the in-
put is a graph that consists of vertices and weighted
edges. The goal is to partition the graph into K
roughly equal-sized parts with the objective of min-
imizing the cut (the sum of the weights of those edges
connecting different parts). We choose to solve clus-
ter ensemble problems using graph partitioning tech-
niques for two reasons. First, graph partitioning is
a well studied area and algorithms such as spectral
clustering have been successful in a variety of appli-
cations (Shi & Malik, 2000; Dhillon, 2001). Second,
cluster ensembles provide a natural way to define sim-
ilarity measures for computing the weight of the edges
in a graph, which is an important and sometimes hard
to satisfy prerequisite for the success of graph parti-
tioning techniques (Bach & Jordan, 2004).

Previously, Strehl and Ghosh (2002) proposed two
approaches to formulating graph partitioning prob-
lems for cluster ensembles. The first formulation is
an instance-based approach that models instances as
vertices in a graph and computes the weight of each
edge as the similarity between the pair of instances it
connects based on how frequently they are clustered
together. The second formulation is a cluster-based
approach that models clusters as vertices and com-
putes the weight of each edge as the similarity between
the clusters based on the percentage of instances they
share. Note that we cannot reconstruct the original
cluster ensemble based on a graph formed by either
the instance-based or cluster-based approach, indicat-
ing that both approaches incur information loss from a
given ensemble. This paper proposes a new graph for-
mulation that simultaneously models both instances
and clusters as vertices in a bipartite graph. Such a
graph retains all of the information of an ensemble,
allowing both the similarity among instances and the
similarity among clusters to be considered collectively
to construct the final clusters. Moreover, the resulting

graph partitioning problem can be solved efficiently.

We experimentally compare the proposed graph for-
mulation to the instance-based and cluster-based ap-
proaches on five data sets. To understand the impact
of different cluster ensemble types, two different ap-
proaches of generating cluster ensembles are applied.
Our experiments show that among the three formu-
lations, the proposed bipartite approach achieves the
most robust clustering performance. For each data set,
the bipartite formulation is always comparable and in
some cases significantly better than the other two ap-
proaches. In addition, we point out a natural connec-
tion between cluster ensemble problems and keyword-
based document clustering. This connection raises in-
teresting questions for cluster ensemble research and
suggests directions for future research.

The remainder of this paper is arranged as follows.
Section 2 introduces the basics of cluster ensembles fol-
lowed by a brief review of the related work. Section 3
introduces the problem of graph partitioning. In Sec-
tion 4 we describe the instance-based and cluster-based
graph formulations. Our bipartite graph formulation
is then presented in Section 5. In Section 6 we de-
scribe our experimental design and present the results
in Section 7. Finally, Section 8 concludes the paper
with an overview of the contributions and a discussion
of the connection between cluster ensemble problems
and document clustering.

2. Cluster Ensembles and Related Work

This section introduces the basics of cluster ensembles
and briefly reviews the existing techniques for solving
cluster ensemble problems that do not involve graph
partitioning.

2.1. Cluster Ensembles

A cluster ensemble system solves a clustering problem
in two steps. The first step takes a data set as in-
put and outputs an ensemble of clustering solutions.
The second step takes the cluster ensemble as input
and combines the solutions to produce a single clus-
tering as the final output. In this paper we assume
hard clusterings are used to form the ensembles. But
it should be noted that all of the graph-formulation
approaches examined in this paper can be applied to
cluster ensembles with soft clusterings, directly or with
minor modifications. Below we formally define cluster
ensembles and state the cluster ensemble problem.

Given a data set X = {X1, X2, · · · , Xn}, a cluster en-
semble is a set of clustering solutions, represented as
C = {C1, C2, · · · , CR}, where R is the ensemble size,

i.e., the number of clusterings in the ensemble. Each
clustering solution Cr is simply a partition of the data
set X into Kr disjoint clusters of instances, represented
as Cr = {Cr

1 , Cr
2 , · · · , Cr

Kr
}, where ∪kCr

k = X.

Generally speaking, the value of Kr for different clus-
tering runs can be either the same or different. The
techniques we study here can be applied in both cases.

Given a cluster ensemble C and a number K, the de-
sired number of clusters, to solve the cluster ensemble
problem is to use the information provided by C and
partition X into K disjoint clusters as the final clus-
tering solution. Note that in some cases, the original
features of X may also be used with C to produce the
final clustering solution. This study focuses on the
case where X is only used to generate the ensemble.

2.2. Related Work on Combining Clusterings

While our paper focuses on combining clusterings by
graph partitioning, other alternative approaches ex-
ist. A commonly used approach (Fred & Jain, 2002;
Fern & Brodley, 2003; Monti et al., 2003) combines
the clusterings by first generating a similarity matrix
for instances and then applying agglomerative cluster-
ing algorithms to produce a final clustering. Recently
Topchy et al. (2003; 2004) propose to represent a clus-
ter ensemble as a new set of features describing the
instances and produce final clusters by applying K-
means and EM to the new features. See Dimitriadou
et al., 2001 and Dudoit & Fridlyand, 2003 for other
representative technqiues for combining clusterings.

While performing a thorough comparison of all avail-
able techniques is beyond the scope of this paper, in
recent studies (Strehl & Ghosh, 2002; Topchy et al.,
2004), graph-partitioning based approaches appear to
be highly competitive compared to other techniques.

3. Graph Partitioning

This section describes the basics of graph partitioning.
A weighted graph is represented by G = (V,W), where
V is a set of vertices and W is a nonnegative and
symmetric |V | × |V | similarity matrix characterizing
the similarity between each pair of vertices.

The input to a graph partitioning problem is a
weighted graph G and a number K. To partition a
graph into K parts is to find K disjoint clusters of
vertices P = {P1, P2, · · · , PK}, where ∪kPk = V . Un-
less a given graph has K, or more than K, strongly
connected components, any K-way partition will cross
some of the graph edges. The sum of the weights of
these crossed edges is defined as the cut of a partition

P : Cut(P,W) =
∑

W (i, j), where vertices i and j do
not belong to the same cluster.

The general goal of graph partitioning is to find a K-
way partition that minimizes the cut, subject to the
constraint that each part should contain roughly the
same number of vertices.1 In practice, various graph
partitioning algorithms define different optimization
criteria based on the above goal. Examples include
the normalized cut criterion (Shi & Malik, 2000) and
the ratio cut criterion (Hagen & Kahng, 1992). See
(Fjallstrom, 1998) for an in-depth discussion. Here we
defer the discussion of our choice of graph partitioning
algorithm to Section 6.2. Given the basics of cluster
ensembles and graph partitioning, we are now ready
to explore various techniques for reducing a cluster
ensemble problem to a graph partitioning problem.

4. Existing Graph Formulations for
Cluster Ensembles

This section introduces two existing techniques pro-
posed by Strehl and Ghosh (2002) for formulating
graphs from cluster ensembles. We rename these
two techniques as instance-based and cluster-based ap-
proaches to characterize the differences between them.

4.1. Instance-Based Graph Formulation

Instance-Based Graph Formulation (IBGF) constructs
a graph to model the pairwise relationships among in-
stances of the data set X. Recall that the commonly
used agglomerative approach (Fred & Jain, 2002; Fern
& Brodley, 2003; Monti et al., 2003) generates a sim-
ilarity matrix from the cluster ensemble and then
performs agglomerative clustering using the similar-
ity matrix. IBGF uses this matrix in conjunction with
graph partitioning. Below we formally describe IBGF.

Given a cluster ensemble C = {C1, · · · , CR}, IBGF
constructs a fully connected graph G = (V,W), where

• V is a set of n vertices, each representing an in-
stance of X.

• W is a similarity matrix and W (i, j) =
1
R

∑R
r=1 I(gr(Xi) = gr(Xj)), where I(·) is an in-

dicator function that returns 1 if the argument is
true and 0 otherwise; gr(·) takes an instance and
returns the cluster that it belongs to in Cr.

W (i, j) measures how frequently the instances i and
j are clustered together in the given ensemble. In re-
cent work (Fern & Brodley, 2003; Monti et al., 2003),
this similarity measure has been shown to give satisfac-
tory performance in domains where a good similarity

1Note that in some cases this bias maybe unwarranted.

(or distance) metric is otherwise hard to find. Once
a graph is constructed, one can solve the graph par-
titioning problem using any graph partitioning tech-
nique and the resulting partition can be directly out-
put as the final clustering solution.

Note that IBGF constructs a fully connected graph,
resulting in a graph partitioning problem of size n2,
where n is the number of instances. Depending on the
algorithm used to partition the graph, the computa-
tional complexity of IBGF may vary. But generally
it is computationally more expensive than the cluster-
based approach and our proposed approach, which is
a key disadvantage of IBGF.

4.2. Cluster-Based Graph Formulation

Note that clusters formed in different clusterings may
contain the same set of instances or largely over-
lap with each other. Such clusters are considered to
be corresponding (similar) to one another. Cluster-
Based Graph Formulation (CBGF) constructs a graph
to model the correspondence (similarity) relationship
among different clusters in a given ensemble and parti-
tions the graph into groups so that the clusters of the
same group correspond to one another.

Given a cluster ensemble C = {C1, · · · , CR}, we first
rewrite C as C = {C1

1 , · · · , C1
K1

, · · · , CR
1 , · · · , CR

KR
}

where Ci
j represents the jth cluster formed in the ith

clustering run in the ensemble C. Denote the total
number of clusters in C as t =

∑R
r=1 Kr. CBGF con-

structs a graph G = (V,W), where

• V is a set of t vertices, each representing a cluster

• W is a matrix such that W (i, j) is the similarity
between the clusters Ci and Cj and is computed
using the Jaccard measure as: W (i, j) = |Ci∩Cj |

|Ci∪Cj |

Once a partition of the clusters is obtained, we can
produce a final clustering of instances as follows. First
we consider each group of clusters as a metacluster.
For each clustering, an instance is considered to be as-
sociated with a metacluster if it contains the cluster
to which the instance belongs. Note that an instance
may be associated with different metaclusters in dif-
ferent runs, we assign an instance to the metacluster
with which it is most frequently associated. Ties are
broken randomly.

The basic assumption of CBGF is the existence of
a correspondence structure among different clusters
formed in the ensemble. This poses a potential prob-
lem — in cases where no such correspondence struc-
ture exists, this approach may fail to provide satisfac-
tory performance. The advantage of CBGF is that it

Cluster 2

Cluster 1

Cluster 4

Cluster 3
Cluster 4Cluster 3

Instances

Cluster 2Cluster 1

(a) Clustering 1 (b) Clustering 2 (c) Bipartite Graph

Figure 1. An example of the Hybrid Bipartite Graph Formulation

is computationally efficient. The size of the resulting
graph partitioning problem is t2, where t is the total
number of clusters in the ensemble. This is signifi-
cantly smaller than the n2 of IBGF, assuming t ¿ n.

Strehl and Ghosh (2002) also proposed a hypergraph-
based approach, which models clusters as hyperedges
and instances as vertices in a hypergraph and uses a
hypergraph partitioning algorithm to produce a final
partition. Conceptually, this approach forms a differ-
ent type of graph and has the limitation that it can not
model soft clustering. Practically, we observed that it
performed worse than IBGF and CBGF on our data
sets. Due to the above reasons, we choose not to fur-
ther discuss this approach in this paper.

5. Hybrid Bipartite Graph Formulation

This section presents our Hybrid Bipartite Graph For-
mulation (HBGF) and explains its conceptual advan-
tages over IBGF and CBGF.

Description of HBGF Given a cluster ensemble
C = {C1, · · · , CR}, HBGF constructs a graph G =
(V,W), where

• V = V C ∪ V I , where V C contains t vertices each
representing a cluster of the ensemble; V I con-
tains n vertices each representing an instance of
the data set X.

• W is defined as follows. If the vertices i and j are
both clusters or both instances, W (i, j) = 0; oth-
erwise if instance i belongs to cluster j W (i, j) =
W (j, i) = 1 and 0 otherwise.

Note that W can be written as: W =
[

0 AT

A 0

]

where A is a connectivity matrix whose rows corre-
spond to the instances and columns correspond to the
clusters. A(i, j) is an indicator that takes value 1 if
instance i belongs to the j-th cluster and 0 otherwise.

Figure 1 shows an example of HBGF. Particularly, Fig-
ures 1(a) and (b) depict two different clusterings of
nine instances and Figure 1(c) shows the graph con-
structed by HBGF, in which the diamond vertices rep-
resent the clusters and the round vertices represent the
instances. An edge between an instance vertex and a
cluster vertex indicates that the cluster contains the
instance. All the edges in the graph have weight one
(edges with zero weights are omitted from the graph).
In this graph, cluster vertices are only connected to
instance vertices and vice versa, forming a bipartite
graph. If a new clustering is added to the ensemble, a
new set of cluster vertices will be added to the graph
and each of them will be connected to the instances
that it contains.

Shown in Figure 1(c) as a dashed line, a partition of
the bipartite graph partitions the cluster vertices and
the instance vertices simultaneously. The partition of
the instances can then be output as the final clustering.

Although HBGF’s vertex set is the sum of IBGF’s and
CBGF’s vertex sets, it can be shown (Dhillon, 2001)
that due to its special structure, the real size of a bi-
partite graph partitioning problem is n × t, where n
is the number of instances and t is the total number
of clusters in the ensemble C. This is significantly
smaller compared to the size n2 of IBGF, assuming
that t ¿ n.

Conceptual advantages of HBGF Comparing
HBGF with IBGF and CBGF, we argue that it has two
important conceptual advantages. First, the reduction
of HBGF is lossless — the original cluster ensemble
can be easily reconstructed from an HBGF graph. In
contrast, IBGF and CBGF do not have this property.

To understand the second advantage of HBGF, it
should be noted that IBGF and CBGF consider the
similarity of instances and the similarity of clusters in-
dependently and, as shown below, such independent
treatment may be problematic.

Comparing two pairs of instances (A, B) and (C, D),
we assume that A and B are never clustered together
in the ensemble and the same is true for pair (C, D).
However, the instances A and B are each frequently
clustered together with the same group of instances in
the ensemble, i.e., A and B are frequently assigned to
clusters that are similar to each other. In contrast,
this is not true for C and D. Intuitively we consider A
and B to be more similar to one another than C and D.
However, IBGF will fail to differentiate these two cases
and assign both similarities to be zero. This is because
IBGF ignores the information about the similarity of
clusters while computing the similarity of instances.

A similar problem exists for CBGF. For example, con-
sider two pairs of clusters (C1, C2) and (C3, C4). As-
sume that C1 ∩C2 = φ and C3 ∩C4 = φ. And further
assume that the instances of C1 and those of C2 are of-
ten clustered together in other clustering runs, whereas
this is not the case for C3 and C4. Note that CBGF
will assign both similarities to zero while intuitively we
would consider C1 and C2 to be more similar to one
another than C3 and C4. CBGF fails to differentiate
these two cases, because it does not take the similarity
of instances into account.

In constrast, HBGF allows the similarity of instances
and the similarity of clusters to be considered simul-
taneously in producing the final clustering. Thus it
avoids the above problems of IBGF and CBGF.

6. Experimental Design

In this section we first describe the methods used in
our experiments for generating cluster ensembles and
then introduce the graph partitioning algorithms and
how they are used in our experiments.

6.1. Generating Cluster Ensembles

Cluster ensembles can be generated in different ways.
The resulting ensembles may differ and the same ap-
proach for solving the ensemble problems may perform
differently accordingly. It is thus important for our ex-
periments to consider different ways to generate clus-
ter ensembles. Our experiments use two approaches,
random subsampling (Dudoit & Fridlyand, 2003) and
random projection (Fern & Brodley, 2003), to gener-
ate the ensembles. Note that for both approaches,
K-means is used as the base clustering algorithm and
the number K is pre-specified for each data set and
remains the same for all clustering runs.

Note that we also examined a third approach, ran-
domly restarting K-means, and it produced similar
results to those of random subsampling. So we omit

these results in the discussion of our experiments.

6.1.1. Random Subsampling

For each clustering run, we randomly subsample the
original data set with a sampling rate of 70%. The sub-
sampling is performed without replacement to avoid
duplicating instances. We then cluster the subsam-
ple and assign each instance absent from the current
subsample to its closest cluster based on its Euclidean
distance to the cluster centers to ensure that all the
instances are clustered in each clustering run.

6.1.2. Random Projection

For each clustering run, we first randomly generate a
projection matrix Pd×d′ to project the given data set
onto a lower dimensional space, where d is the origi-
nal dimension of the data set and d′ is the dimension
that we project the data onto. We then cluster the
projected low-dimensional data set.

Recently, Fern and Brodley (2003) showed that both
the diversity and quality of a cluster ensemble signifi-
cantly impact what can be achieved by combining the
clusterings of the ensemble. We choose the above two
approaches because we expect them to produce ensem-
bles with different properties. On one hand, we expect
the clusterings generated by random projection to be
diverse because it provides the base learner with dif-
ferent views of the data. On the other hand, we ex-
pect the quality of the clusterings produced by random
subsampling to be higher because it provides the base
learner with more complete information of the data.

6.2. Graph Partitioning Algorithms

Our goal is to evaluate different graph formulation ap-
proaches. To reduce the influence of any chosen graph
partitioning algorithm on our evaluation, we use two
well-known graph partitioning algorithms that differ
with respect to their search for the best partition.

6.2.1. Spectral Graph Partitioning

Spectral graph partitioning is a well studied area with
many successful applications. We choose a popular
multi-way spectral graph partitioning algorithm pro-
posed by Ng et al. (2002), which seeks to optimize the
normalized cut criterion (Shi & Malik, 2000). We refer
to this algorithm as SPEC.

SPEC can be simply described as follows. Given a
graph G = (V,W), it first computes the degree ma-
trix D, which is a diagonal matrix such that D(i, i) =∑

j W (i, j). Based on D, it then computes a nor-

malized weight matrix L = D−1W and finds L’s
K largest eigenvectors u1, u2, · · · , uK to form matrix
U = [u1, · · · , uK]. The rows of U are then normalized
to have unit length. Treating the rows of U as K-
dimensional embeddings of the vertices of the graph,
SPEC produces the final clustering solution by clus-
tering the embedded points using K-means.

Intuitively, SPEC first embeds the vertices of a graph
onto a K-dimensional space and then performs cluster-
ing in the K-dimensional space. For graphs generated
by IBGF and CBGF, the clusters and instances are
embedded and clustered separately. Interestingly, for
HBGF, the clusters and instances are simultaneously
embedded onto the same space and clustered together.
Here we argue that this offers potential advantages
over IBGF and CBGF. Compared to IBGF, the inclu-
sion of the cluster vertices may help define the struc-
ture of the data and make it easier for K-means to find
the structure in the K-dimensional space. In compari-
son to CBGF, it is expected to be more robust because
even when the cluster vertices are not well structured,
possibly due to the lack of a correspondence structure
in the clusters, K-means can still perform reasonably
well using the instance vertices.

6.2.2. Multilevel Graph Partition: Metis

Metis (Karypis & Kumar, 1998), a multilevel graph
partitioning system, approaches the graph partitioning
problem from a different angle. It partitions a graph
using three basic steps: (1) coarsen the graph by col-
lapsing vertices and edges; (2) partition the coarsened
graph and (3) refine the partitions. In comparison to
other graph partitioning algorithms, Metis is highly
efficient and achieves competitive performance.

Comparing Metis and SPEC in practice, we observe
mixed results — neither approach is consistently bet-
ter than the other, indicating that both approaches
have different advantages and weaknesses. Note that
the goal of our experiments is to evaluate the different
graph representations generated by IBGF, CBGF and
HBGF, not the search bias of SPEC and Metis. To
this end, we run both SPEC and Metis for each graph
and report the maximum NMI (Our evaluation metric,
See Section 7.2) obtained. This is done for all three
types of graphs to ensure a fair comparison.

7. Experimental Results

The goal of the experiments is to evaluate the three
graph formulations - IBGF, CBGF and HBGF - given
different cluster ensembles.

Table 1. Summary of the data sets

data set eos glass hrct isolet6 modis
#inst. 2398 214 1545 1440 4975
#class 8 6 8 6 10
org. dim. 20 9 183 617 112

rp dim. 5 5 10 10 6
pca dim. — — 30 60 6

7.1. Data Sets and Parameter Settings

Five data sets are used in our experiments. The char-
acteristics of the data sets are summarized in Table 1
with related parameter choices. HRCT is a high reso-
lution computed tomography lung image data set with
eight classes (Dy et al., 1999). MODIS and EOS
are land cover data sets described by different feature
sets. ISOLET6 and GLASS are from the UCI machine
learning repository (Blake & Merz, 1998), where ISO-
LET6 is a subset of the ISOLET spoken letter recog-
nition training set. In particular, ISOLET6 contains
the instances of six classes (letters) randomly selected
out of twenty six classes (letters).

To construct cluster ensembles using random projec-
tion, we need to specify the number of dimensions that
random projection uses for each data set. The num-
bers are listed in the fifth row of Table 1.2

When random subsampling is used, for the EOS and
GLASS data sets, we construct the cluster ensembles
directly as described in Section 6.1.1. Note that the
other three data sets are of high dimensionality. For
these data sets, we reduce the dimension by Principal
Component Analysis (PCA) prior to generating the
ensembles. The dimensions that PCA uses are listed
in the sixth row of Table 1. They are selected such
that 85% of the data variance is preserved.

In all clustering runs, which include both the runs dur-
ing ensemble construction and the partitioning of the
final graphs, the cluster number K is set to be the same
as the number of classes in a given data set. Note that
the class labels are not used during clustering.

7.2. Evaluation Criterion

Because our data sets are labeled, we can assess the
quality of the clustering solutions using external cri-
teria that measure the discrepancy between the struc-
ture defined by a clustering and what is defined by the
class labels. Here we choose to use an information the-
oretic criterion — the Normalized Mutual Information

2Random projection was first used for cluster ensembles
by Fern and Brodley (2003), where EOS and HRCT were
also used. We use the same settings for EOS and HRCT
and arbitrarily selected the values for the other data sets.

(NMI) criterion (Strehl & Ghosh, 2002). Treating clus-
ter labels and class labels as random variables, NMI
measures the mutual information (Cover & Thomas,
1991) shared by the two random variables and normal-
izes it to a [0, 1] range. Note that the expected NMI
value of a random partition of the data is 0 and the
optimal value 1 is attained when the class labels and
cluster labels define the same partition of the data.

7.3. Results

Table 2 presents the performance of IBGF, CBGF
and HBGF on cluster ensembles generated by both
random subsampling (columns 2-4) and random pro-
jection (columns 5-7). For each ensemble generating
method, we report the results with three different en-
semble sizes (20, 40 and 60).3 Each number reported
here is obtained by averaging across ten random runs,
where for each run we use both SPEC and Metis to
partition the generated graph and record the maxi-
mum NMI obtained as the result of that run. Finally,
the last row of each data set reports the average per-
formance of the base learner for each ensemble type.

Comparing IBGF, CBGF and HBGF First let
us look at the performance of the three approaches on
cluster ensembles generated by random subsampling,
shown in the first set of three columns of Table 2. We
see that the performance of IBGF and CBGF are com-
parable for three of the five data sets (EOS, GLASS
and MODIS) and mixed for the other two. In par-
ticular, IBGF performs better on the HRCT data set
while CBGF is the winner for the ISOLET6 data set.
When HBGF is used, we observe that in most cases its
performance is comparable to the better of the other
two approaches and is significantly better for EOS.

Similar observations can also be made for the random
projection ensembles except that here CBGF appears
to be less competitive and performs significantly worse
than both IBGF and HBGF in two (EOS and HRCT)
of the five data sets. We conjecture that this is because
random projection ensembles tend to be more diverse4

so that a correspondence structure is less likely to exist
in the clusters.

Comparing with the base learner From Table 2,
we observe that HBGF is the only graph formula-
tion approach that leads to consistent performance im-
provement over the base learner in all cases. CBGF ap-
pears to be the least stable approach among the three
graph formulations.

3Other sizes were used but omitted to avoid redundancy.
4Our experiments confirm that random projection gen-

erates more diverse ensembles than random subsampling
as measured by the approach of Fern and Brodley (2003).

Table 2. Comparing IBGF, CBGF and HBGF

random subsampl. random proj.

20 40 60 20 40 60
eos

ibgf 0.263 0.262 0.262 0.260 0.263 0.269
cbgf 0.262 0.264 0.263 0.246 0.247 0.247
hbgf 0.340 0.319 0.303 0.357 0.343 0.325

(0.263) (0.246)
glass

ibgf 0.400 0.405 0.388 0.376 0.373 0.368
cbgf 0.393 0.398 0.395 0.379 0.378 0.377
hbgf 0.405 0.398 0.399 0.401 0.386 0.390

(0.378) (0.334)
hrct

ibgf 0.310 0.312 0.313 0.283 0.299 0.301
cbgf 0.279 0.277 0.280 0.256 0.267 0.274
hbgf 0.303 0.318 0.321 0.274 0.292 0.301

(0.292) (0.196)
isolet6

ibgf 0.804 0.799 0.812 0.761 0.802 0.811
cbgf 0.832 0.837 0.833 0.750 0.790 0.802
hbgf 0.844 0.823 0.823 0.765 0.801 0.813

(0.790) (0.447)
modis

ibgf 0.478 0.478 0.478 0.485 0.493 0.491
cbgf 0.476 0.478 0.478 0.482 0.490 0.491
hbgf 0.478 0.478 0.478 0.485 0.487 0.494

(0.473) (0.389)

Interestingly, we see that both IBGF and CBGF fail
to improve over the base learner for EOS when ran-
dom subsampling ensembles are used, whereas HBGF
achieves significantly better clustering results using the
same cluster ensembles. We consider this as an indi-
cation that the constructed cluster ensembles indeed
provide helpful information for clustering but was not
captured by IBGF or CBGF in their graphs. We ar-
gue that HBGF’s success may be attributed to the fact
that it retains all the information of the ensembles and
that it allows the similarity of instances and the simi-
larity of clusters to be considered simultaneously.

Another interesting fact about the EOS data set is that
for both types of cluster ensembles, the performance
of HBGF degrades as the ensemble size increases. We
plan to further explore this issue by inspecting the
behavior of the graph partitioning algorithms.

From the above observations, we conclude that HBGF
is more robust than both IBGF and CBGF. In our ex-
periments, it yields competitive and sometimes better
performance compared to both IBGF and CBGF.

8. Conclusions and Future Work

This paper presented HBGF, a graph formulation that
reduces a cluster ensemble problem to a bipartite
graph partitioning problem. HBGF simultaneously
models the instances and clusters of a given ensemble
as vertices of a bipartite graph. It achieves lossless re-
duction and allows the similarity among instances and
the similarity among clusters to be considered simul-
taneously in thefinal clustering. Further, the resulting
graph partitioning problem can be solved efficiently.
We compare HBGF with two commonly used graph
formulations for cluster ensembles. Our experiments
on five data sets show that HBGF achieves compa-
rable or better performance in comparison with the
other two approaches and results in the most robust
performance improvement over the base learner.

Finally, we want to point out an interesting connection
between cluster ensemble problems and keyword-based
document clustering. In document clustering, a set of
keywords is used to represent a document as a vector.
Each element of the vector indicates if the document
contains a specific keyword. Considering an instance
as a document and the clusters the instance belongs
to as the keywords the document contains, clustering
instances according to the clusters can be related to
clustering documents based on the keywords. Nat-
urally, we can relate CBGF to document clustering
approaches based on clustering keywords (Slonim &
Tishby, 2000) and HBGF to the bipartite co-clustering
approach proposed by Dhillon (2001). This connection
raises an interesting question. Can we borrow ideas
from document clustering, a highly advanced area,
to help solve cluster ensemble problems? This sug-
gests two directions for future work. First, document
clustering with keyword clustering has been shown to
yield better performance than without keyword clus-
tering (Slonim & Tishby, 2000). However, for cluster
ensemble problems, CBGF appears to be inferior to
both IBGF and HBGF. Such an inconsistency mer-
its further exploration of the cluster-based approach.
Secondly, our hybrid approach may also benefit from
a recently proposed information theoretic co-clustering
technique (Dhillon et al., 2003).

Acknowledgments

We thank the reviewers for their helpful comments.
The authors were supported by NASA under Award
number NCC2-1245.

References

Bach, F. R., & Jordan, M. I. (2004). Learning spectral
clustering. NIPS 16.

Blake, C. L., & Merz, C. J. (1998). UCI
repository of machine learning databases.
http://www.ics.uci.edu/∼mlearn/MLRepository.html.

Cover, T. M., & Thomas, J. A. (1991). Elements of infor-
mation theory. John Wiley & Sons.

Dhillon, I. S. (2001). Co-clustering documents and words
using bipartite spectral graph partitioning. KDD.

Dhillon, I. S., Mallela, S., & Modha, D. S. (2003).
Information-theoretic co-clustering. KDD.

Dimitriadou, E., Weingessel, A., & Hornik, K. (2001).
Voting-merging: An ensemble method for clustering.
ICANN.

Dudoit, S., & Fridlyand, J. (2003). Bagging to improve the
accuracy of a clustering procedure. Bioinformatics, 19.

Dy, J. G., Brodley, C. E., Kak, A., Shyu, C., & Broderick,
L. S. (1999). The customized-queries approach to CBIR
using EM. CVPR.

Fern, X. Z., & Brodley, C. E. (2003). Random projection
for high dimensional data clustering: A cluster ensemble
approach. ICML.

Fjallstrom, P. (1998). Algorithms for graph partitioning:
A survey. Linkoping Electronic Articles in Computer
and Information Science, 3.

Fred, A. L. N., & Jain, A. K. (2002). Data clustering using
evidence accumulation. ICPR.

Hagen, L., & Kahng, A. (1992). New spectral methods for
ratio cut partitioning and clustering. IEEE transaction
on CAD, 11, 1074–1085.

Karypis, G., & Kumar, V. (1998). A fast and high qual-
ity multilevel scheme for partitioning irregular graphs.
SIAM Journal on Scientific Computing, 20, 359–392.

Monti, S., Tamayo, P., Mesirov, J., & Golub, T. (2003).
Consensus clustering: A resampling-based method for
class discovery and visualization of gene expression mi-
croarray data. Machine Learning, 52, 91–118.

Ng, A., Jordan, M., & Weiss, Y. (2002). On spectral clus-
tering: Analysis and an algorithm. NIPS 14.

Shi, J., & Malik, J. (2000). Normalized cuts and image
segmentation. IEEE Transaction on Pattern Analysis
and Machine Intelligence, 22, 888–905.

Slonim, N., & Tishby, N. (2000). Document clustering us-
ing word clusters via the information bottleneck method.
Research and Development in Information Retrieval.

Strehl, A., & Ghosh, J. (2002). Cluster ensembles - a
knowledge reuse framework for combining multiple par-
titions. Machine Learning Research, 3, 583–417.

Topchy, A., Jain, A. K., & Punch, W. (2003). Combining
multiple weak clusterings. ICDM.

Topchy, A., Jain, A. K., & Punch, W. (2004). A mixture
model for clustering ensembles. Proc. of SIAM Conf. on
Data Mining.

