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Subtitle: Towards the Virtual Leaf: computational modeling of growth and development
General context:

The current success of high-throughput genome-wide experimental procedures, including DNA sequencing, microarray analyses and mutation libraries, encourages biologists to replace traditional, back-of-the-envelope conceptual models for more comprehensive computational models. An area particularly suitable for such an approach is growth and development, because of its inherent multi-scale nature. Thus to fully understand the function of the molecular components of a biological patterning mechanism, we must trace out they fit into higher organization levels: from genetic networks, via cell behavior, to tissue organization and organ morphology.

Our current modeling efforts are aimed at unraveling the mechanism of venation patterning during leaf growth, and the relation between growth and venation patterning. Ultimately, this should help us explain how the interaction between patterned gene expression, leaf vascularization, oriented cell division, and the physical strains and stresses caused by non-uniform tissue expansion shape the leaf.

Long term objectives:

· Hypothesis generation. Bring The Virtual Leaf  to the experimentalist's lab bench, where it will have  several uses as an integral component of the empirical cycle:

1. knowledge integration: the model will lay down, in a dynamic way, established mechanisms of leaf growth, including the genetic interactions between genes involved in auxin transport, protein localization, cell polarization, the cell cycle and cell expansion

2. hypothesis design: the experimental biologist will pre-test the dynamic consequences of hypotheses. The hypothetical mechanisms that best reproduces existing observations will be the most promising candidate for further experimental testing

3. experimental design: the simulation tool will predict the outcomes of experimental manipulations if the anticipicated mechanism were correct. Thus the tool suggests experiments that would validate or falsify the hypothetical mechanism conceived by the experimenter.

· Validation. New Ph.D student Stijn Dhondt will map out the activity of genes known to be involved in venation patterning using fluorescent protein constructs that will visualize the activity of the known molecular components of leaf vascularization. He will also search for unknown genes specific to the vascular system using Fluoresent-Activated Cell Sorting and microarray experiments.  We are developing high-resolution image analysis techniques to compare leaf expansion and vascular morphology to the simulation results

Short term objectives:

· Venation patterning. We apply the current prototype Virtual Leaf for unraveling the mechanism of venation patterning. Modern formulations of the canalization hypothesis by Sachs (1969) assume a positive feedback between auxin flux and polar localization of auxin transporter proteins, including PIN1. Current molecular evidence makes such a mechanism unlikely. We have identified a putative mechanism consistent with experimental evidence.  We are preparing an opinion article for Trends in Plant Science, pending a submitted article proposal.

· Feedback between growth and venation patterning.  Our current models include cell expansion and division, and preliminary simulation results indeed suggest that leaf blade expansion can explain the positioning of the second order and higher order veins. We validate this model against experimental data by Scarpella et al. 2006, and are planning a separate publication or one in conjunction with the proposed venation mechanism.
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Subtitle: Module network learning algorithms
General context: 
One of the goals of the systems approach to molecular biology is to reverse engineer the regulatory networks underlying cell function [1]. Particularly transcriptional regulatory networks have received a lot of attention, mainly because of the availability of large amounts of relevant experimental data. Several studies use expression data, promoter motif data, chromatin immunoprecipitation (ChIP) data and/or prior functional information (e.g. GO classifications [2] or known regulatory network structures) in conjunction to elucidate transcriptional regulatory networks [3–17]. Most of these methods try to unravel the control logic underlying specific expression patterns. This type of analysis typically requires elaborate computational frameworks. In particular probabilistic graphical models are considered a natural mathematical framework for inferring regulatory networks [8].
Probabilistic graphical models, the best-known representatives being Bayesian networks, represent the system under study in terms of conditional probability distributions describing the observations for each of the variables (genes) as a function of a limited number of parent variables (regulators), thereby reconstructing the regulatory network underlying the observations. Segal et al. [6] proposed a probabilistic graphical model for regulatory networks inspired by the inherent modularity of biological networks [18]. In this so-called ‘module network’ formalism, groups of genes, called modules, share the same parents and conditional distributions. As the number of parameters to be estimated in a module network is much smaller than in a full Bayesian network, the currently available gene expression data sets can be large enough for the purpose of learning module networks [6, 11, 12, 19]. 
We recently developed our own tool for learning module networks, called LeMoNe [20]. We used simulated data to assess the effects of the methodological changes we made in LeMoNe with respect to existing frameworks, in particular Genomica [6]. Overall, application of Genomica and LeMoNe to various simulated datasets gave comparable results, with a bias towards higher sensitivity for Genomica and higher specificity for LeMoNe. However, LeMoNe offers some advantages over the original framework of Segal et al. [6], one of them being that the learning process is considerably faster. Another advantage of LeMoNe is the fact that the algorithm ’lets the data decide’ when learning the regulatory tree structure, i.e. the partitioning of expression data inside a module is not dependent on the expression profiles of the potential regulators, but only on the module data itself. As a consequence, LeMoNe is better at handling missing or hidden regulators, a situation which might occur if the true regulator is missing from the list of potential regulators, or if the expression of the targets cannot be related directly to the expression of the regulator, e.g. due to posttranslational regulation of the regulator’s activity.
Long term objectives:

· Develop extended module network models that use/integrate more types of data (e.g. ChIP-chip, motifs, sequence polymorphisms) for the purpose of reconstructing regulatory networks.
· Use these models to unravel (parts of) the regulatory wiring of A. thaliana.
Short term objectives:
· Further improve our module network learning algorithm in terms of speed and performance (sensitivity, specificity) by implementing alternative learning strategies.
· Merge elements of information theory and Bayesian statistics in the learning process,  and optimize Bayesian score function.
· Infer module networks from Arabidopsis data, specifically focussed on developmental processes (leaf development, root development, cell cycle).
Bibliography: 
1. Ideker T, Galitski T, Hood L: A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2001, 2:343–372.
2. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 2000, 25:25–29. 

3. Friedman N, Linial M, Nachman I, Pe’er D: Using Bayesian networks to analyze expression data. J Comput Biol 2000, 7:601–620. 

4. Pe’er D, Regev A, Elidan G, Friedman N: Inferring subnetworks from perturbed expression profiles. Bioinformatics 2001, 17 Suppl 1:S215–S224. 

5. Bar-Joseph Z, Gerber GK, Lee TI, Rinaldi NJ, Yoo JY, Robert F, Gordon DB, Fraenkel E, Jaakkola TS, Young RA, Gifford DK: Computational discovery of gene modules and regulatory networks. Nat Biotechnol 2003, 21:1337–1342. 6. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller D, Friedman N: Module networks: identifying regulatory modules and their condition-specific regulators from gene expression data. Nat Genet 2003, 34:166 – 167. 7. Beer MA, Tavazoie S: Predicting gene expression from sequence. Cell 2004, 117:185 – 198. 

8. Friedman N: Inferring cellular networks using probabilistic graphical models. Science 2004, 308:799 – 805. 

9. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA, Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA: Transcriptional regulatory code of a eukaryotic genome. Nature 2004, 431:99 – 104. 

10. Luscombe NM, Madan Babu M, Yu H, Snyder M, Teichmann SA, Gerstein M: Genomic analysis of regulatory network dynamics reveals large topological changes. Nature 2004, 431:308 – 312. 

11. Xu X, Wang L, Ding D: Learning module networks from genome-wide location and expression data. FEBS Lett 2004, 578:297 – 304. 

12. Battle A, Segal E, Koller D: Probabilistic discovery of overlapping cellular processes and their regulation. J Comput Biol 2005, 12:909–927. 

13. Basso K, Margolin AA, Stolovitzky G, Klein U, Dalla-Favera R, A C: Reverse engineering of regulatory networks in human B cells. Nat Genet 2005, 37:382 – 390. 

14. Garten Y, Kaplan S, Pilpel Y: Extraction of transcription regulatory signals from genome-wide DNA-protein interaction data. Nucleic Acids Res 2005, 33:605–615. 

15. Petti AA, Church GM: A network of transcriptionally coordinated functional modules in Saccharomyces cerevisiae. Genome Res 2005, 15:1298–1306. 

16. Lemmens K, Dhollander T, De Bie T, Monsieurs P, Engelen K, Smets B, Winderickx J, De Moor B, Marchal K: Inferring transcriptional modules from ChIP-chip, motif and microarray data. Genome Biol 2006, 7:R37. 

17. Van den Bulcke T, Lemmens K, Van de Peer Y, Marchal K: Inferring transcriptional networks by mining ‘omics’ data. Current Bioinformatics 2006, 1:301 – 313. 

18. Hartwell LH, Hopfield JJ, Leibler S, Murray AW: From molecular to modular cell biology. Nature 1999, 402:C47 – C52. 

19. Segal E, Friedman N, Kaminski N, Regev A, Koller D: From signatures to models: understanding cancer using microarrays. Nat Genet 2005, 37:S38 – S45.
20. Michoel T, Maere S, Bonnet E, Joshi A, Saeys Y, Van den Bulcke T, Van Leemput K, van Remortel P, Kuiper M, Marchal K and Van de Peer Y: Validating module network learning algorithms using simulated data. Submitted to BMC Bioinformatics.
