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Abstract 

 

Background 

Gene duplication, followed by divergence, is known as a main source of metabolic versatility. The 

patchwork and stepwise models help to understand these processes, but their assumptions are 

relatively simplistic. In this work, we used a network based approach to determine the influence of 

metabolic constraints on the retention of duplicated genes. 

 

Results 

We detected duplicated genes looking for enzymes sharing homolog domains. Our results uncover 

an increased retention of duplicates between reactions catalyzing consecutive reactions, as 

illustrated by the ligases acting in the biosynthesis of peptidoglycan. As a consequence, metabolic 

networks show a high retention of duplicates within functional modules. We found a preferential 

coupling of reactions that partially explain this bias. A similar behavior was found in enzyme-

enzyme interaction networks, but we failed to detect it in gene transcriptional regulatory and non-

enzymatic protein-protein interaction networks. Thus, we suggest that this bias results from laws 

governing substrate-enzyme-product relationships. Additionally, our findings confirm a high 

retention of duplicates between chemically similar reactions, as illustrated by the origin of fatty 

acids metabolism. However, the retention of duplicates between chemically dissimilar reactions is 

also greater than expected by chance. Finally we detected a significant retention of duplicates as 

groups, instead of single entities. 

 

Conclusions 

Collectively, our findings provide evidence that in silico models trying to explain the origin and 

evolution of metabolism are improved with the inclusion of specific functional constraints, such as 

the preferential coupling of reactions. Our findings suggest that the stepwise and patchwork models 

are not independent of each other. In fact, the network perspective used herein permits us to 

reconcile and combine these models. 
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Background 

The classical view of metabolism is that relatively isolated sets of reactions or pathways allow 

the synthesis and degradation of compounds. The new perspective views metabolic components 

(substrates, products, cofactors, and enzymes) as part of a single network. Defining metabolism as 

pathways is not always straightforward because some functional properties, such as the closeness 

between reactions from different pathways, are visible only when metabolism is analyzed from a 

network perspective [1]. A way to do this is representing metabolism with a compound-centric 

network, wherein nodes (substrates and products) participating in the same reaction are connected. 

Otherwise, in an enzyme-centric network, nodes (enzymes) producing a compound are connected 

with other nodes consuming the same compound. These tools have shown that metabolism has a 

scale-free topology [2, 3], meaning that the majority of nodes show a low degree of connectivity, 

but a small fraction of highly connected nodes dominates the topology of the network. Another 

property of metabolic networks is their hierarchical modularity [4, 5], showing groups of highly 

clustered, functionally related nodes. 

Recent models have successfully simulated the origin of scale-free networks by gene 

duplication [6], while their modular organization has been explained by the preferential attachment 

of new nodes to the most connected preexisting ones [5]. Nevertheless, these models do not take 

into account the functional constraints of metabolism [6]. For instance, carbon-nitrogen ligases 

(EC:6.3.-.-) tend to act consecutively, reducing their chance to associate with enzymes catalyzing 

other reaction types (Figure 1). We call this property “preferential coupling of reactions”, and 

suggest that it reflects a biochemical necessity, for example to synthesize the peptidoglycan of 

bacterial cell wall. Our results evidence the importance of including functional constraints to 

improve the models of the origin and evolution of metabolic networks. In fact, a recent model 

simulating the origin of highly connected compounds [7] is significantly improved when reactions 

are considered as coupled reaction pairs, instead of single entities. 

 

The first hypotheses on the origin and evolution of enzyme-driven metabolism were 

formulated based on the idea that gene duplication, followed by divergence, can lead the origin of 

new metabolic reactions. The two pioneering models about this paradigm, stepwise [8] (or 

retrograde) and patchwork [3] exhibit two main differences: i) The stepwise model posits that, as 

consequence of the depletion of a substrate, gene duplication can provide enzymes capable of 

supplying the exhausted substrate, giving rise to homolog enzymes catalyzing consecutive 
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reactions. Whereas the patchwork model postulates that duplication of genes encoding promiscuous 

enzymes (capable of catalyzing various reactions) allows each descendent enzyme to specialize in 

one of the ancestral reactions. In this regard, enzymes generated by patchwork can catalyze 

reactions separated by distances greater than those originated by stepwise. ii) The stepwise model 

invokes consecutive reactions, hence it can originate enzymes catalyzing chemically dissimilar 

reactions (CDR) but preserving specificity for the type of substrate [9, 10]. In contrast, the 

patchwork model considers that promiscuous enzymes tend to catalyze chemically similar reactions 

(CSR) even while acting on different types of substrates [9, 10]. A simple way to determine 

whether similar reactions are, is comparing the first two digits of their EC numbers (EC:a.b.-.-) [10-

12]. 

 

Some authors have used the differences between the stepwise and patchwork models 

attempting to clarify their possible contribution to specific cases in the evolution of metabolism. 

Collectively, these analyses suggest the patchwork model as the most common mechanism 

generating metabolic versatility [9-12]. A major difficulty with these analyses is the significant 

fraction of consecutive CSR catalyzed by homolog enzymes [10, 11]. The stepwise model could 

explain the origin of such reactions because they are consecutive, but also the patchwork model 

could do because they are CSR. For example, amidophosphoribosyl transferase and xanthine 

phosphoribosyltransferase, are homolog enzymes catalyzing consecutive reactions. Thus, their 

origin could be attributed to the stepwise model. Nonetheless they catalyze CSR and hence their 

origin could also be explained by the patchwork model (Figure 1A). Similarly, the origin of four 

homolog carbon-nitrogen ligases of the peptidoglycan biosynthesis agrees with the stepwise model 

because they catalyze consecutive reactions, but also with the patchwork model because they 

catalyze CSR [10] (Figure 1B). Here, we determined that the fraction of consecutive CSR is 

significantly greater than the one expected by chance (see below), implying that the origin of such 

reactions can be explained complementary by stepwise and patchwork. We suggest that using a 

network based approach these two models can be reconciled. 

  

In this article we reconstructed the E. coli K12 and multiorganismal enzyme-centric metabolic 

networks according to the BioCyc [13, 14] and the KEGG [15] databases. The protein sequences of 

their enzymes were compared to detect duplicated genes (hereafter called duplicates). We evaluated 

the influence of both the chemical similarity and the distance between reactions on the rate of 
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retained duplicates. We also estimated whether the preferential coupling of reactions and the 

modularity of networks affect this rate. Finally, we detected cases in which duplicates have been 

retained as groups and determined how general this mechanism is. 

 

 

Results and Discussion 

 

The preferential coupling of reactions in metabolic networks reflects a functional constraint 

Metabolism follows logical rules implying that specific reactions and fluxes are temporally 

and spatially compartmentalized [16]. We searched for some of these rules in our data, determining 

whether the combination of reactions types (EC:a.b.-.-) is constrained by biochemical necessities, 

or it simply results from random processes. To do this, we determined the frequency for each 

reaction pair type (EC:a.b.-.- � EC:w.x.-.-) in metabolic networks, and compared it against the 

values expected by chance. To calculate expected values a set of null “Maslov-Sneppen” models 

[17] was generated. The models are randomly rewired versions of the original network, preserving 

the degree of connectivity for each node (see Methods). The results evidence that certain reaction 

types tend to act consecutively (Figure 1D). To illustrate the biological relevance of this finding 

consider the case of carbon-nitrogen ligases (EC:6.3.-.-), which tend to be followed by other 

EC:6.3.-.-, for example to synthesize peptidoglycan (Figure 1B). In fact, a recent study uncovers 

that metabolites also show a preferential coupling [18]. We consider that these biases reflect 

underlying biochemical mechanisms and substrate stoichiometric necessities. In the following 

sections we discuss the relevance of this finding to the retention of duplicates. 

 

Influence of chemical similarity on the retention of duplicates 

We computed the retention of duplicates originating both CSR and CDR. The resulting 

frequencies were compared against the values expected by chance, using “Maslov-Sneppen” 

models, to determine whether they can be attributable to a biological pressure. Figure 2A shows 

that retention of duplicates between CSR is 6-fold greater than the observed between CDR. This 

agrees with previous reports [10-12]. However, note that duplicates leading both CSR and CDR at 

distances < 3 are more frequent than expected by chance (Z-score > 3, P < 0.001). The main 

implication of this finding is that the retention of duplicates generating both CSR and CDR is not a 



 6

random process, but reflects underlying biological phenomena. Thus, gene duplication is an 

important source of metabolic variability, but also of biochemical innovations. 

 

Influence of distance between reactions on the retention of duplicates 

In addition to the retention of duplicates generating CSR and CDR, Figure 2A shows an 

increased retention of duplicates between closer reactions. This is between consecutive reactions, or 

between reactions separated by one or two metabolic steps. The explanation of this phenomenon is 

non-trivial because there is not a biological trait clearly associable to shorter distance between 

reactions. Thus, we compared the results from metabolic networks with those from other biological 

networks to determine whether our observation is general. We identified duplicates within a gene 

transcription regulatory network [19] and within a validated protein-protein interaction network 

[20], both from E. coli. The regulatory network did not show a significant influence of the distance 

between transcription factors and target genes on the retention of duplicates (Figure 2C). In 

contrast, the protein-protein interaction network (Figure 2D) shows an increased retention of 

duplicates between closer proteins. A more detailed analysis uncovers that this increase is mainly 

influenced by enzyme-enzyme interactions. In fact, the fraction of non-enzymatic duplicates, 

mainly composed by replication, transcription, translation and protein folding complexes, is not 

significantly different from random (Z-score < 3, P > 0.001). Thus, it seems that the increased 

retention of duplicates between closer proteins is characteristic of metabolic networks and enzyme-

enzyme complexes. From this observation, we propose that laws governing substrate-enzyme-

product relationships in metabolic networks are different from those acting on protein-DNA and 

non-enzymatic protein-protein interactions. A possible reason for this is that metabolic interactions 

have a small molecule as intermediate, the substrate/product compound, whereas the protein-

protein and protein-DNA interactions require larger surfaces, and their retention could be more 

difficult. In fact, some authors have shown that regulatory interactions are quickly lost [21]. In 

contrast, protein-protein interactions are preserved in a higher degree, specifically those involved in 

metabolic processes [22]. 

 

What distinguishes metabolic from other biological network types that could increase the 

retention of duplicates between closer nodes? We found that the preferential coupling of reactions 

is an important constraint characterizing metabolic networks. Thus, we simulated the retention of 

duplicates in a set of null “functionally” similar models including this constraint. These models are 
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randomly rewired versions from the original network, preserving both the degree of connectivity 

and the preferential coupling of reactions (see Methods). The retention of duplicates simulated 

using “Maslov-Sneppen” models (red circles in Figure 2A) show a behavior independent of the 

distance between proteins. In contrast, using “functionally” similar models (red circles in Figure 

2B) an increased retention of duplicates between closer nodes was detected, approximating better 

what happens in real metabolic networks. This implies that the preferential coupling of reactions 

partially explains the increased retention of duplicates between closer reactions. Because this 

coupling of reactions is exclusive for metabolism, this finding also helps to understand why in 

transcriptional regulatory and non-enzymatic protein-protein interaction networks this behavior was 

not detected. 

 

Finally, we controlled for various network and enzyme properties on the retention of 

duplicates. First, we considered whether the increased retention of duplicates is restricted to a 

region of the network. To evaluate this we randomly sampled the network and computed the 

retention of duplicates within samples. The main finding (blue bars in Figure 1A and 1B) is that the 

increased retention of duplicates between closer reactions remains statistically significant (Z-Score 

> 3, P < 0.001), and is not restricted to a region of the network. Second, we evaluated the influence 

of highly promiscuous compounds (hubs) on the retention of duplicates, gradually excluding hubs 

from network reconstructions and computing the retention of duplicates each time. The increased 

retention of duplicates between closer enzymes remains statistically significant (Z-Score > 3, P < 

0.001) (Additional data file 4). Similar results were found analyzing different metabolic networks 

(Additional data file 4). Third, because there is a significant number of enzymes consisting of two 

or more domains, having only one EC number assigned, and vice versa [23], their direct 

comparison can cause false positives. To avoid this, we manually split enzyme sequences by 

functional domains. Additionally, in one control (Additional data file 5), we extracted the subset of 

monodomain enzymes and repeated the analyses of retention of duplicates. In a second control 

(Additional data file 5), we required that all domains between duplicates are homologs. The results 

from these two controls support the ones discussed in previous sections. Fourth, we redefined our 

criterion of chemical similarity, using both the first digit of EC numbers (EC:a.-.-.-) and the first 3-

digits (EC:a.b.c-). As expected, these new criteria modify the relative rates of CSR and CDR 

retained duplicates (Additional data file 5), but the increased retention of duplicates at closer 

distances remains significant, supporting our previous conclusions. Finally, because we used a 



 8

method to detect remote homology, based on hidden Markov models, we controlled for this method 

conducting a search for homologs using Blast (closer homologs) and Psi-Blast (remote homologs) 

(Additional data file 5). As expected the rate of retained duplicates changes when considering only 

closer homologues, but the increased retention of duplicates between closer reactions remains 

statistically significant (Z-Score > 3, P < 0.001). Collectively, these controls evidence that the 

increased retention of duplicates at shorter distances is independent of the way in which metabolic 

databases are constructed, their size, and the hub prevalence. The manual validation of enzyme 

domains and network databases could precise our findings, but the main conclusions are robust. 

 

Influence of network modularity on retention of duplicates 

It has been reported that metabolic networks possess modular architecture [4, 5]. Enzymes 

constituting a module are highly clustered neighbors, and consequently one could expect a higher 

retention of duplicates within modules than between them. To test this hypothesis we used a 

hierarchical clustering algorithm to detect modules in metabolic networks (Figure 3A. See 

Methods). Then we calculated a paired measure of evolutionary distance (ED) for all-against-all 

metabolic pathways. This measure reflects the retention of duplicates between pathways within and 

between modules. Our definition of (ED) is similar to the one used to determine the relatedness 

between genomes based on protein domain content [24] (see Methods). It is important to emphasize 

that (ED) is not the distance between nodes referred in previous sections. The results show that 

metabolic pathways of the same module tend to have a lower (ED) (Figure 3B). This implies a 

greater retention of duplicates within modules than between them. For instance, considering the E. 

coli metabolic network as a whole, the total retention of duplicates among CSR is ~15 %. In 

contrast, if one module is extracted, such as the metabolism of amino acids (blue portion in Figures 

3A and 3B, indicated by pink arrows), and the retention of duplicates within it is calculated, the 

resulting fraction is ~50%. To assess the significance of (ED) values we compared them against 

those expected by chance. To do this, we simulated a null scenario preserving both the connectivity 

and interaction partners of the original network, but the domain content across proteins was 

randomly shuffled (see Methods). This analysis demonstrates that the retention of duplicates within 

modules is significantly greater than between them (Z-Score > 3, P < 0.001) (Fig 3C). Thus, we 

propose that the capability of metabolic networks to grow modularly by gene duplication is closely 

related with two factors: the closeness between reactions and the kind of substrate(s) participating 
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within each module. Further studies evaluating the influence of metabolites similarity on the 

retention of duplicates could help to understand this phenomenon. 

 

Retention of duplicates as groups and single entities 

Finally we determined the frequency of duplicates retained as groups (pairs of consecutive 

reactions), instead of single entities. To illustrate this idea, let us show the case of fatty acid 

degradative (β-oxidation) and biosynthetic routes (Figure 4A). These pathways are chemically 

similar, but act in opposite directions and differ in their acyl-carrier groups. We determined that 

enzymes catalyzing CSR in these pathways were originated by gene duplication. Thus, we suggest 

that an ancestral pathway catalyzed both the fatty acid degradation and their biosynthesis. The 

direction of such ancestral pathway could be dependent on the acyl-carriers and fatty acids 

available. To have a first approximation of how general this observation is, we performed an all-

against-all comparison of the enzymes catalyzing consecutive CSR (EC:a.b.-.- � EC:w.x.-.-). Our 

results indicate that ~15% of enzymes have at least one homolog in metabolism. From this fraction, 

two thirds are retained as isolated duplicates (scenario III in Figure 4B) and one third is retained as 

groups (scenario II in Figure 4B). Interestingly, the retention of both groups and isolated duplicates 

is greater than expected by chance (Z-scores > 50). In contrast, the case where retention of 

duplicates was not detected is lower than expected (Z-scores < -20). Thus, we suggest that models 

trying to explain the growing of metabolism by gene duplication should include the retention of 

both groups and isolated duplicates. 

 

 

Conclusions 

We used an enzyme-centric network approach to estimate the retention of duplicates in 

metabolism from various sources (species and databases). The observed frequencies were 

compared against null models to determine their significance. Collectively, our results highlight the 

influence of both distance and chemical similarity between reactions on the retention of duplicates. 

Specifically, we found an increased retention of duplicates between consecutive reactions (Figure 

2A and 2B), and demonstrate that this bias can be partially attributed to the preferential coupling of 

reactions (Figure 2B). A similar analysis using a gene transcriptional regulatory and protein-protein 

interaction networks shows that this behavior is characteristic of enzymatic relationships. Thus, we 
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propose that the laws governing substrate-enzyme-product interactions are different from those 

acting on protein-DNA and non-enzymatic protein-protein interactions (Figure 2C and 2D). This is 

reflected as a higher retention of duplicates within network modules than between them (Figure 3). 

Additionally, our results evidence a significant retention of duplicates acting on both CSR and 

CDR (Figure 2), supporting the idea that gene duplication is not only important to generate 

metabolic variants but also innovations [9-12]. A synergic influence of closeness and chemical 

similarity between reactions explains the high retention of duplicates between consecutive CSR 

(Figure 2A). Our hypothesis that duplicates are significantly retained as groups can be extended to 

several series of reactions (Figure 4). 

We consider that gene duplication should be studied as a single process, instead of 

distinguishing the retention of duplicates by the stepwise or patchwork models. The difficulties 

derived from the traditional conception of these models are avoided with the network based 

approach used herein, reconciling the stepwise and patchwork models. 

Biological networks share general topological properties, such as their scale-free behavior and 

hierarchical modularity. In fact, some of these properties have been found in social and 

technological networks [2, 5, 19, 25, 26]. Our findings coincide with previous studies suggesting 

that the next step in modeling the origin and evolution of networks must consider not only the 

properties they share but also those differentiating them [7, 25, 27]. In particular, we improved the 

modeling of metabolic networks including the preferential coupling of reactions. A more detailed 

analysis contemplating other functional constrains, such as metabolite similarity and binding versus 

catalytic enzyme properties, as well as massive gene duplications and horizontal gene transfer, 

could enhance our understanding of the influence of metabolic versatility in the evolution of 

species. 

 

 

Materials and Methods 

 

Networks reconstruction 

Enzyme-centric metabolic networks according to two databases BioCyc v8.0 (EcoCyc and 

MetaCyc) and KEGG v0.4 (EcoKegg and the full KEGG, refered RefKegg) were reconstructed as 

follow: if the reaction R1 produces the compound A, and A is the substrate of R2, a directed link 
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between the EC numbers of R1 and R2 was established. In reversible reactions, a second link, from 

the EC number of R2 to the EC number of R1, was added. To obtain information of reactions from 

BioCyc the following files were used: "reactions.dat" (substrate/product), "enzrxns.dat" 

(reversibility) and "reaction-links.dat" (EC numbers). The “xml” files from KEGG provide similar 

information in their sections: "reaction" (substrate/product and reversibility) and "entries id" (EC 

numbers). For each network hubs were detected, and the links established solely by hubs were 

gradually eliminated. The reconstructed networks, eliminating the top 20 hubs, posses the 

following number of nodes/edges: EcoCyc (976/4473), EcoKegg (804/2410), MetaCyc (964/4230), 

RefKegg (2575/11499). 

 

Detection of retained duplicates 

Enzyme sequences were retrieved, according to the desired EC number, from the following 

databases: EcoCyc, UNIPROT [28], BRENDA [29], and KEGG. A manual split of sequences by 

functional domains, according to UNIPROT, was carried out to avoid false positives caused by 

multifunctional enzyme comparisons. The final set has 4534 domain sequences, representing 1527 

EC numbers completely annotated and 348 partial annotations. To detect duplicates, sequences 

were compared against the hidden Markov models of homolog domains of SUPERFAMILY v1.65 

[30] and PFAM v16 [31] databases. The HMMER v2.3.1 suite of programs [32] was used for this 

comparison, with an E-value = 0.001 as threshold. We assumed chemically similar those reactions 

catalyzed by enzymes whose EC numbers share the first two digits (EC:a.b.-.-). A network 

adjacency matrix containing every pair of nodes (i,j) was imputed to the Floyd-Warshall algorithm 

[33] to determine the distance (minimal path length) between each pair (i,j). The adjacency matrix 

contained all reactions with known substrate/products, including those without an assigned enzyme 

(gene). This strategy permits to determine the retention of duplicates as a function of both the 

distance and the chemical similarity between reactions. 

The function (1/distanceij
2
) was used to construct a matrix of normalized associations for all 

pairs (i,j). This matrix was used to perform a hierarchical clustering to detect network modules. To 

do this, we used the Kendall's τ algorithm implemented in the program CLUSTER 3.0 [34]. Similar 

results were obtained using the Spearman rank correlation. To determine the retention of duplicates 

within and between modules we calculated the evolutionary distance (ED) for each pair of 

pathways as follow: 

ED = A' / (A' + AB) 
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where A' is the number of enzymes of the smaller pathway (pA) without homologs in the second 

pathway (pB). AB is the number of enzymes of pA with homologs in pB. In the limit, when all the 

enzymes of pA have homologs in pB, the value of (ED) tends to zero. In contrast, when the two 

pathways share no homologs the value of (ED) tends to one. 

 

Significance tests 

To determine whether the higher retention of duplicates at closer distances could be 

restricted to a portion of the network we conducted 10,000 half random samplings of the real 

network and calculated the frequency of retained duplicates within each sample. Additionally, we 

determined the significance of these frequencies, comparing them against the values expected by 

chance using two sets of null models. The first set, comprising 10,000 “Maslov-Sneppen” models, 

preserve the degree of connectivity for each node of the original network, but edges were randomly 

rewired. To construct these models, two edges of the original network were randomly chosen and 

their inputs were switched. This was repeated until the original network was completely rewired 

(see lower panel of Figure 2A). The second set, comprising 10,000 “functionally” similar models, 

preserve both the degree of connectivity and the preferential coupling of reactions of the original 

network. To construct these models, two edges of the original network were randomly chosen, but 

their inputs were switched only if both the inputting and outputting nodes represent chemically 

similar reactions (see lower panel of Figure 2B). Otherwise, other two edges were chosen, and the 

former ones were returned for further choices. This was repeated until the network was completely 

rewired. Some edges, from chemically similar groups with even number of pairs, remain unpaired 

after rewiring their group. They were added to models in their original form. These pairs represent 

less than 5% of the models. 

We used the Z-score (Zi) to determine the significance of real frequencies as follow: 

Zi = (Nreali - <Nrandi>)/std(Nrandi) 

where Nreali is the frequency of an attribute (i) in the real network. For example, the frequency for 

each reaction pair type, the number of retained duplicates at a given distance, and so on. <Nrandi> 

and std(Nrandi) are the average frequency and standard deviation of (i) in null models. A Z-score ≥ 

3 implies that the frequency of (i) in the real network is significantly greater than expected by 

chance (P < 0.001). In contrast a Z-score ≤ -3 indicates that (i) is significantly underrepresented in 

the real network. 
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To determine the significance of (ED) values within and between modules, we compared 

the actual values against the ones expected using 1000 null models. These models preserve the 

networks intact (connectivity and wiring), but the domain content was shuffled across proteins. A 

Z-score ≤ -3 implies that retention of duplicates between two pathways is greater than expected by 

chance (P < 0.001). 

 

 

Additional data files 

The following additional data are available with the online version of this paper. Additional file 1 

shows the reconstructed metabolic networks from various databases (EcoKegg, EcoCyc, RefKegg 

and MetaCyc) eliminating hubs gradually in each database. Additional file 2 shows the amino acid 

sequences of enzymes analyzed in this work. Additional file 3 shows the domains detected in such 

sequences, grouped by EC numbers. Additional file 4 shows the results of retention of duplicates in 

various databases, gradually removing hubs Additional file 5 shows the controls for the 

multidomain enzymes, the criteria of chemical similarity, and the method used to detect duplicates. 
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Figure legends 
 

Figure 1. Preferential coupling of reactions in metabolic networks. A) Homolog transferases 

catalyzing consecutive CSR. Their origin can be explained by both the stepwise and the patchwork 

models. B) Homolog ligases whose origin can be explained by both the stepwise and the patchwork 

models. A distant homologue (FolC) acts in the folate metabolism. C) Frequencies of reaction types 

(EC:a.b.-.-) in the E. coli K12 metabolic network, according to KEGG (hereafter called EcoKegg). 

D) Frequencies of consecutive reaction types (EC:a.b.-.- � EC:w.x.-.-) in EcoKegg were compared 

against the expected values using a set of null “Maslov-Sneppen” models (see Methods). The Z-

score (color scale bar at top) indicates the number of standard deviations between the real and the 

average expected frequencies. Consecutive reaction types overrepresented in real networks are 

shown in green-to-yellow, underrepresented ones are shown in red. The diagonal (pink box) 

highlights consecutive CSR, including the ligases synthesizing peptidoglycan (pink arrow). 

Reaction types were sorted vertically using a hierarchical clustering to detect highly related 

reactions types, such as EC:1.5.-.-, EC:1.7.-.- and EC:2.1.-.-. (center of plot). 

 

Figure 2. Influence of chemical similarity and distance between reactions on the retention of 

duplicates. A) Frequencies of retained duplicates (histogram bars) in EcoKegg are shown for the 

whole reaction set (ALL), and the subsets of CSR and CDR, at different distances (metabolic 

steps).  Blue bars indicate three standard deviations (σ) from these frequencies. Deviations were 

obtained conducting a random sampling. Red circles represent the average expected frequencies, 

+/- 3 σ, obtained using “Maslov-Sneppen” models. B) A similar procedure to A) was conducted, 

using null “functionally” similar models (red circles), to control the influence of the preferential 

coupling of reactions. Lower panels in A) and B) illustrate the rewiring constructing null models. In 

“Maslov-Sneppen” models all nodes are equally eligible. In “functionally” similar models the 

preferential coupling of reactions restricts the choices. C) Retention of duplicates in the gene 

transcription regulatory network of E. coli as function of the distance (number of regulatory 

interactions) between transcription factors and target genes. D) Retention of duplicates in a protein-

protein interaction network of E. coli. The full set of interactions (ALL), and the subsets of 

enzyme-enzyme (EC-EC) and the non-enzymatic protein-protein (P-P) interactions are shown. In 

C) and D) red circles represent “Maslov-Sneppen” models. 
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Figure 3. Influence of network modularity on the retention of duplicates. A) A hierarchical 

clustering was carried out to delimitate modules in metabolic networks. Colors denote each module 

in EcoKegg. B) Metabolic pathways (branches in the trees) within and across modules (colors 

group related branches) were compared using a measure of evolutionary distance (ED). A value of 

(ED) closer to zero (darker dot) implies a greater retention of duplicates between two pathways. C) 

Observed (ED) values were compared against the ones expected by chance. A Z-score < -3 (green) 

refers to significant (ED) values (P < 0.001). 

 

Figure 4. Retention of duplicates as groups and single entities. A) The fatty acid degradative 

and biosynthetic routes exemplify the retention of duplicates as group. Same colors in EC number 

boxes denote duplicates. B) Retention of duplicates acting consecutively. Five possible scenarios 

were analyzed (left panel). Same color boxes denote duplicates. Scenarios (I) and (V) have a 

common reaction followed or preceded by other two. In (I) gene duplication was detected, in (V) it 

was not. Scenarios (II), (III) and (IV) imply the existence of two consecutive reaction pairs. In (II) 

both pairs are duplicates, in (III) only one pair is duplicated, and in (IV) none of the pairs are 

duplicates. Accordingly, one pair can participate in more than one scenario, looking upstream or 

downstream the network flux. The right histogram shows the frequency for each scenario. Red 

circles represent the expected frequencies, +/- 3 σ, obtained using “Maslov-Sneppen” models. 
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