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Abstract
Currently, literature is integrated in systems biology studies in three ways. Hand-curated pathways have been
sufficient for assembling models in numerous studies. Second, literature is frequently accessed in a derived form,
such as the concepts represented by the Medical Subject Headings (MeSH) and Gene Ontologies (GO), or functional
relationships captured in protein^protein interaction (PPI) databases; both of these are convenient, consistent
reductions of more complex concepts expressed as free text in the literature. Moreover, their contents are easily
integrated into computational processes required for dealing with large data sets. Last, mining text directly for
specific types of information is on the rise as text analytics methods become more accurate and accessible. These
uses of literature, specifically manual curation, derived concepts captured in ontologies and databases, and indirect
and direct application of text mining, will be discussed as they pertain to systems biology.
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INTRODUCTION
Two unprecedented phenomena are occurring in

the biomedical space: the increasing rate at which

papers are published [1,2], and the genome-wide

experimental coverage made possible by the advent

of high-throughput technologies, including yeast

two-hybrid, microarray and mass spectrometry [3].

To stay abreast of one’s field of expertise, or to analyze

the results from high-throughput data sets, it is

essential to tap into the ever-growing repository

of existing knowledge that is housed in the scientific

literature. To do so in an efficient way requires

methods that can reduce complexity without

compromising the integrity of published data.

A central aim of text analytics is to transform scientific

literature from free-form densely written articles into

high quality structured data from which proteins,

diseases and species and their inter-relationships are

easily accessed (for recent reviews, see [4,5]). To

conduct such a transformation requires identifying

relevant literature, which is known as information

retrieval or text classification. Classes of related

terms, or entities, such as proteins, diseases or tissues,

are extracted from the text. Relationships among

entities are extracted for mining or quantification.

Performing these tasks manually does not scale well

for analysis of results generated by high-throughput

approaches like microarrays or two-hybrid analysis.

High-volume literature analysis requires the tech-

nologies collectively known as text analytics.

Just as text analytics aims to manage complexity of

the literature, systems biology attempts to manage

biological complexity by considering integrated

pathways previously studied only in isolation,

thereby better representing what happens in vivo
[6]. The ‘four M’s’, measurement, mining, modeling

and manipulation, describe the series of events that

comprise a systematic study. A system is manipulated
by perturbation, the effects are measured using high-

throughput methods, the data are mined and modeled
to create a new hypothetical system, which is then

subjected to further manipulation to test emergent

hypotheses [7]. As the source of meaningful concepts

familiar to the biologist, the scientific literature is an

essential element of mining and modeling.

Literature-derived data imparts a descriptive aspect

not inherent to sequence identification numbers or

obscure official gene names.

High-throughput methods have been in place

long enough to raise concern whether one, or even

two, large-scale experiments directed at the same

problem sufficiently distinguish rare events from false

positives. There is mounting evidence that integrat-

ing several large-scale data sets can provide answers
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that are drowned out by noise in the absence of

multiple experimental approaches. For instance,

candidate genes for several mitochondrial disorders

were identified by combining no less than eight

genome-wide data sets, when traditional methods

would have required sequencing megabases of

DNA to pinpoint candidate loci [8]. In another

example, hypotheses generated by integrating high-

throughput data sets and information from literature-

derived databases yielded new insights into yeast

galactose utilization not evident after decades of

scrutiny [9].

Text analytics can be thought of as another high-

throughput weapon in the system biologist’s arsenal,

with all the power and complications that such

approaches afford. The challenge of interpreting any

high-throughput data set is distinguishing signals

from noise [10,11]. This is as true of text mining data

sets as it is of transcript profiling or yeast two-hybrid

analysis. In a microarray experiment, there are genes

whose expression undergoes dramatic changes in

response to perturbation, and many more genes that

are expressed at or around the level of background.

Text mining analyses also have strong and weak

signals, and they can depend on, for example, the

number of times a concept is stated [12] or how

simply it is phrased in the literature [13,14].

Nonetheless, transforming the unstructured informa-

tion in scientific publications into structured data,

that can be mapped to gene identifiers and other

well-defined entities, is essential for reaping the

rewards of the millions of person-years that went

into generating the published literature available

today.

This review covers how free text has been

structured for use in high-throughput studies, and

how literature is used in systems biology. Text

analytics are currently used to generate resources that

support systems biology studies, but they are rarely

applied directly. Based on current methods of

literature use, text mining technologies and resources

underutilized in systems biology are recommended,

as are improvements to text analytics to encourage

more widespread use in systems-wide studies.

STRUCTURINGTHE LITERATURE:
ONTOLOGIES,THESAURI AND
DATABASES
For systems biologists to mine the literature

effectively, they must be able to retrieve relevant

articles using commonly used keywords that unify

related entities. An obvious way to homogenize

related concepts is to flag them with the same

standardized term. If the standardized terms are

organized in a hierarchical structure that reflects

known relationships, even greater understanding is

conveyed by standardization. An ontology is a set of

terms organized to define their relationships, creating

a formal representation of knowledge [15]. As such,

it is the logical solution to transform biology into a

machine-readable depiction of life as we know it.

Term collections less structured than ontologies

include taxonomies, controlled vocabularies, thesauri

and dictionaries. Differences among these are subtle

and will collectively be referred to as terminol-

ogies [16]. A terminology’s utility in information

retrieval and entity extraction is in part dependent on

the synonyms attached to principle terms. MeSH

(Medical Subject Headings) is a 24 000 term

terminology developed by the National Library of

Medicine (NLM) to structure the seventeen million

records in MEDLINE, and it is frequently used in

text analytics for information retrieval and mining

relationships [17,18]. Curators at the NLM review

each article entering MEDLINE, then select terms

from the MeSH hierarchy that best capture the aims

of the article, thereby summarizing it using a set of

controlled vocabulary terms. Curating citations with

MeSH terms facilitates searching by unifying similar

concepts and by disclosing additional information

not mentioned specifically in the title or abstract.

Numerous studies illustrate the power of MeSH in

information retrieval, citing improvements in effi-

ciency and recall [19,20]. Accurate selection of

annotation terms from large terminologies requires

a well-defined ontology, explicit instructions for

curation and domain expertise [21,22].

The MeSH terminology has some coverage of

how proteins function in cellular systems, but it is

not exhaustive. To more accurately capture what

happens at the cellular and molecular level, the Gene

Ontology (GO) was developed [23]. Originally

founded by three groups who supported species-

specific databases, the GO Consortium has expanded

to represent fourteen organisms with 14 000 terms

that describe biological process (BP), molecular

function (MF) and cellular component (CC) [22].

Just as MeSH terms are assigned to individual scientific

articles to describe their content, GO terms are

assigned to proteins to illustrate what they do (MF),

where they do it (CC) and to what end (BP).
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Table 1 lists ontologies and terminologies commonly

used in biomedical research and, to a lesser extent,

in systems biology. MeSH and GO have been merged

with other terminologies to form the Unified

Medical Language System (UMLS) [24]. To identify

formal ontological relationships among terms in

the UMLS, the Semantic Network was created,

thereby adding additional computational accessibility

to the free text annotated with UMLS-affiliated

terminologies [16].

TEXTMINING FOR BUILDING
SYSTEMS BIOLOGYRESOURCES
Modeling biological systems usually includes meth-

odology that is gene- or protein-centric, such as

transcript profiling or proteomic analysis. Reliably

identifying protein names in the literature is an active

area of text mining research with a wide range

of applications, including microarray analysis, bio-

marker discovery and database curation. Identifying

genes and proteins in the literature is prohibitively

difficult because of multiple names for a single gene,

shared synonyms among genes and names that are

common or biomedical terms [25,26]. There are

efforts afoot to standardize gene nomenclature,

including the HUGO Gene Nomenclature

Committee for human gene names, but the scientific

community has not adopted standardized terms;

estimates of official human gene name use range

from 18–44% of all mentions of human genes in a

subset of PubMed abstracts [26,27]. Accurately

identifying proteins presents a formidable barrier

between information in the literature and automated

interpretation of high-throughput data. Although

text analytics has not solved the problem of protein

identification, there is movement in the right

direction. Strategies include assembling dictionaries

of gene names and synonyms, expanding acronyms

to differentiate among shared acronyms, and includ-

ing terms like ‘gene’ or ‘protein’ as part of the search

[5,25,28]. A comparison of five strategies to improve

protein name recognition in MEDLINE shows that

all five strategies are required for optimal resolution

of relevant literature attributed to a unique genetic

locus and its products [25].

Once entities like genes or pathways are recog-

nized, automatically extracting how they are

related is another active field in text analytics.

Co-occurrence of two entities in a document

is often used to identify relationships, but it has

some limitations. Wren et al. [29] calculated that

co-occurrence in an abstract reflects a real relation-

ship 58% of the time, whereas if two terms are in the

same sentence, they are related 83% of the time. The

increase in accuracy comes at a cost to sensitivity, as

43% of true relationships would be missed by

requiring terms to co-occur in a sentence [29].

Nonetheless, co-occurrence has been described as

the least labor-intensive method of automatically

linking concepts [5].

In the aforementioned co-occurrence example,

sentence bounds were used to improve the odds

that an automated relationship prediction would

be correct. Text mining using natural language

processing (NLP) not only uses sentence structure,

but also employs parts of speech and phrase

recognition to identify certain relationships among

entities in a sentence (reviewed in [30]). The utility

of overlaying part-of-speech tagging has been

quantified [12,14], and it varies with the objective

of the text mining exercise. In order to classify

Table 1: A non-exhaustive list of ontologies, terminologies and their uses

Ontology/Terminology Used to Annotate URL Reference

MeSHa scientific publications http://www.nlm.nih.gov/mesh/meshhome.html [24]
GOa proteins http://www.geneontology.org/ [22]
IUBMB EC numbers enzymes http://www.chem.qmul.ac.uk/iubmb/enzyme/
COG orthologous protein groups http://www.ncbi.nlm.nih.gov/COG/new/ [49]
SNOMEDa clinical phenomena http://www.nlm.nih.gov/research/umls/sources_by_categories.html [24]
NCI thesaurusa oncological phenomena http://www.nlm.nih.gov/research/umls/sources_by_categories.html [24]
OMIMa genetic disorders http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼OMIM [50]
NCBI Taxonomya species http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db¼Taxonomy [33]
UWDAa anatomy http://www.nlm.nih.gov/research/umls/sources_by_categories.html [24]
Sequence Ontology sequences http://song.sourceforge.net/ [22]
MIPS FunCat proteins http://mips.gsf.de/projects/funcat [51]

aPart of UMLS (http://www.nlm.nih.gov/research/umls/umlsmain.html) (see text for details).
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literature relevant to stem cell research, nouns found

in relevant documents are more effective than verbs

or adjectives at segregating stem cell articles from the

rest of MEDLINE [12]. Reliably identifying gene-

disease relationships is more effective for those

related by verbs than by prepositions [14]. Co-

occurrence was also an effective method of auto-

matically detecting gene-disease relationships, but

only if gene and disease terms were within three

words of one another [14]. Together, these results

show that using multiple methods with high

precision and low recall can collectively improve

the number of articles retrieved without sacrificing

relevance to the topic in question.

Considering the challenges inherent to correctly

identifying gene names and consistently applying

GO terms to proteins, combining the two to

automatically assign GO terms to proteins based

on literature excerpts is a formidable task. The

BioCreAtIvE challenge was established to provide

a community forum for comparing strategies to

automate this task [31]. Although correct identifica-

tion of proteins in the literature was reasonably

successful, accurate annotation of those proteins with

a relevant GO term proved difficult. CC, MF and

BP terms were assigned correctly 11, 9 and 7% of the

time, respectively [31]. These results underscore the

difficulty of fully automating extraction of informa-

tion frequently used by systems biologists, and

underscore the need to simplify manual intervention

by a domain expert for rapid review of text mining

data sets.

USING ONTOLOGIESAND
DATABASES IN SYSTEMS BIOLOGY
Genome sequencing has created nearly complete

gene catalogs for several species, and databases like

UniProt and Entrez house protein compendia as

they relate to genomic sequence, diseases, orthologs,

variants and other kinds of annotation [32,33]. These

central clearinghouses of proteins are logical homes

for functional annotation derived from the literature,

such as GO terms. Because systems biology concerns

the interplay among constituent parts, a list of parts,

however well annotated, is often insufficient.

This observation is supported by a search of the

systems biology literature for resources from which

Table 2: Sources of pathway information in a non-exhaustive list of integrative systems biology studies

Reference Species Databasesa
Pattern
(build or
Validate)

[52] Yeast DIP Validate
[8] Human, mouse SwissProt(Pfam), SGD(GO), OMIM Validate
[34] Yeast, worm, fly, human DIP, MINT, BIND, MIPS, HPRD,OMIM,

Flybase,Wormbase, MGD, Inparanoid,
Custom

Build, validate

[9] Yeast DIP, BIND, SGD(GO) Validate
[35] Human Custom, MGD(GO), DIP, MINT, BIND,

MIPS, HPRD
Validate

[46] Yeast MIPS, SGD, Custom Validate
[37] Yeast, e. coli, h. influenza,

h. pylori
KEGG(EC), MIPS(CYGD), SGD, Enzyme
nomenclature,YPD, ERGO, Swissprot,
Custom

Build

[40] Worm Wormbase(GO) Validate
[53] Many N/A, Custom Build
[38] Worm Custom Build, validate
[54] Yeast Custom, Ensemble, SMART domains Build
[55] Human, mouse, rat, dog TRANSFAC Validate
[56] Mouse Custom Validate
[39] Human Custom, db from [57] Build
[45] Mouse Custom curated db Validate
[58] Human Custom Build
[36] Yeast GO, DIP, BIND Validate
[59] Fly GO Build
[60] Human Custom Build
[61] Yeast YPD(GO), SGD(GO), Curagen interactome Validate

aSee corresponding reference for database details.‘Custom’ refers to unspecifiedmethod of curating information from the literature.
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annotation is taken, some results of which

are listed in Table 2. To compile this list, references

reporting integration of at least two high-throughput

approaches (not including literature-based

approaches) yielding testable hypotheses were

curated for their use of literature to mine or model

the system in question. Combining literature mining

(directly or with the use of ontologies) with a single

high-throughput method is becoming commonplace

and is reviewed elsewhere [1,5,34]. Table 2 shows

frequent use of pathway and Protein–Protein

Interaction (PPI) databases such as the Kyoto

Encyclopedia of Genes and Genomes (KEGG),

Biomolecular Interaction Network Database

(BIND), the Molecular Interactions database

(MINT), Database of Interaction Proteins (DIP),

and the Munich Information Center for Protein

Sequences (MIPS) Protein-Protein Interaction

Database, which provide the next level of

programmatically accessible information by formaliz-

ing relationships among uniquely identifiable con-

stituents. The GO is also frequently mentioned.

Computationally accessible annotation like GO

allows one to ask, for instance, if physical interaction

significantly correlates with MF, subcellular localiza-

tion, or BP, thereby laying the groundwork for

better algorithms to add predicted annotation to

uncharacterized proteins [9,35,36].

Using the 21 references from Table 2, two

patterns of literature usage were apparent. The

‘build’ pattern describes the use of literature curation

to reconstruct well-studied pathways made up of

known protein interactions and their effects.

Curation methods and criteria for including or

excluding proteins in the pathway are rarely

specified, and authors frequently supplement existing

databases with additional information from the

literature [34,37]. High-throughput experiments are

conducted, and new information in the form of

relationships with uncharacterized proteins or

uncharacterized relationships among known proteins

is added and tested [38,39]. The ‘validate’ usage

pattern involves building networks from integrated

data sets, and consulting the literature (usually

captured indirectly in PPI databases) to test if the

model accurately reproduces well-characterized

pathways [40]. In sum, existing resources frequently

tapped in systems biology require additional infor-

mation from the literature to address specific needs of

the experimental design. In the following section,

examples from Table 2 will be used to illustrate how

text analytics can be used to efficiently and

comprehensively mine relationships from text.

The Bimolecular Interaction Network Database

(BIND) is a key resource in systems biology studies

(Table 2). BIND has provided an explicit description

of literature mining methods used to generate

the database, including co-occurrence, sentence

structure, text classification and gene dictionaries

[41]. Abstracts that contain two and only two protein

names in the same sentence are retrieved for curation.

This stringent requirement accounts for some of the

differences between annotation in BIND vs other

interaction databases (for degree of overlap, see [34]),

and highlights the challenge of capturing in an

automated fashion the myriad ways the English

language allows expression of similar concepts. To

further increase relevance, presence of terms associated

with PPI are also used to rank articles.

Additional efficiency in database creation is pro-

vided at the curation interface, including highlighting

of key terms (e.g. protein names and interaction terms),

as well as isolation of the relevant sentence, which may

eliminate the need to read an entire abstract. BIND

staff quantified a 70% reduction in curation time with a

concomitant decrease in the amount of time spent

curating each article [41]. Getting rid of the noise is not

only economical and efficient, but also improves the

quality of evaluation. A study of visual searches for rare

items showed that there were optimal ratios of relevant

to irrelevant events to obtain the highest precision

without compromising recall [42]. Without text

analytics in a database workflow, irrelevant results

drown out relevant ones, increasing the odds that

they will be overlooked.

In another example from Table 2, Forster et al.
[37] enhance data from KEGG and other databases

by extracting kinetic data from the literature. Text

mining has been fine-tuned for this exercise by

Hakenberg et al. [43], and they saw a five-fold

improvement in precision using support vector

machine classification of articles instead of simple

keyword searches. Applying NLP to relevant articles

allows the extraction of kinetic measurements, such

as binding affinities and reaction rates, further

enhancing the efficiency with which a researcher

can mine literature for additional information.

FUTUREDIRECTIONS
Systems biologists will continue to need ways of

extracting information types from the literature
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efficiently and comprehensively. Smaller research

groups do not have the resources to assemble custom

databases of high quality structured information.

To improve literature access, one can make better

use of existing resources, or develop new resources of

wide utility. A conspicuously underutilized resource

in systems biology is MeSH, whose coverage

overlaps with GO and Online Mendelian

Inheritance in Man (OMIM). It is straightforward

computationally to link annotation from databases

via unique citation identifiers. Using an example

from Entrez Gene (http://www.ncbi.nlm.nih.gov/

entrez/query.fcgi?db¼gene, last viewed 1 June

2006), the record for LRRN6A cites one article in

the Bibliography field. Three interacting proteins

imported from the BIND database link to two

additional articles. The three PubMed IDs corre-

sponding to the articles are associated with 121

MeSH terms and substances. The UMLS MeSH to

GO Mapper [44] yields three GO terms not present

in the Entrez Gene record. The absence of MeSH in

systems biology studies may reflect the extra steps

required to reach MeSH terms from more familiar

annotation. Alternatively, it may reflect magnifica-

tion of errors generated by mapping from one

terminology to another. MeSH annotation is

extensive and relatively convenient, and will likely

show up in future studies.

There will always be biological problems too

domain-specific to be adequately supported by

communal annotation projects. Half of the refer-

ences in Table 2 incorporated some form of custom

curation, either to create databases de novo [45], or to
add information to existing databases [37,46].

Building a custom database for integration with

other high-throughput data sets is becoming easier

for the classically trained biologist. Figure 1 provides

a protocol for isolating relevant information with

features known to increase efficiency and reduce

error, such as presenting results in a user-friendly

format, highlighting search terms and isolating

relevant text [47]. Resources like the ones shown

in Table 1 are readily available for setting up a

curation effort. Corpora (the text collection to be

mined) like MEDLINE or full text from PubMed

Central can be licensed and installed locally.

Information extraction systems that transform free

text into structured data are commercially available

and sufficiently sophisticated to accommodate bio-

medical complexity [47,48]. The optimal system

allows a domain expert to perform iterative searches

with minimal programmatic expertise.

CONCLUSIONS
The scientific literature must be in a computationally

accessible format to be useful for systems biology studies.

Figure 1: Workflow for custom literature curation. Problems suitable for text mining are those in which search
terms, like‘pathways’, are placeholders for a list of related terms. Step1involves finding or building terminologies perti-
nent to the query. Step 2 uses an information extraction engine to search a corpus, such as the current version of
MEDLINE (available from the National Library of Medicine) with the selected terminologies. Step 3 refines the query
by adding additional termspulled fromrelevant articles.Patterns of co-occurrence are also noted to determinehow to
combine terminologies at the phrase, sentence or abstract level. Step 4 produces results that are efficiently reviewed
and prepare data for quantification and visualization in Step 5.
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High-throughput technologies have helped spur the

development of databases to house PPI, knockout

phenotype, subcellular localization, MF and BP data

curated from the literature. These information types

can be linked to specific genes and proteins, which

act as intermediaries between literature-derived

annotation and pan-genomic or proteomic data.

Custom curation is frequently employed to meet the

needs of systems biologists. Text analytics speeds

creation of custom annotation by as much as an order

of magnitude [47], thereby lowering the barrier to

accessing the wealth of information in the scientific

literature.
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