
modnet bmc.tex 6 2006-08-10 08:30:29Z tomic

Module Networks, SynTren, etc.

Gent∗1, Leuven2 and Antwerpen3

1Bioinformatics & Evolutionary Genomics, Department of Plant Systems Biology, VIB/Ghent University, Technologiepark 927,
B-9052 Ghent, Belgium
2Leuven
3Antwerpen

Email: Gent∗- . . . @psb.ugent.be; Leuven - . . . @kuleuven.ac.be; Antwerpen - . . . @. . . .be;

∗Corresponding author

Abstract

Background:

Results:

Conclusions: c

Background

Results and Discussion
Overview

Synthetic data

Biological data

Conclusions

Methods
Data sets

SynTren [1] . . .

Module networks

Module networks [2, 3] are a special kind of acyclic
Bayesian networks in which groups of nodes, called
modules, share the same parents and conditional dis-
tributions. For continuous gene expression values,
the conditional distributions are normal with mean
and standard deviation depending on the parent val-
ues through a regression tree that is called the reg-

ulation program of the module. The tests on the

internal nodes of the regression tree are of the form
x ≷ s for some split value s, where x is the expres-
sion value of the parent associated to the node.

The Bayesian score that is used to search for an
optimal module network given the data is obtained
by taking the log-marginal probability of the data
likelihood over the parameters of the normal distri-
butions at the leaves of the regression trees with a
normal-gamma prior. The result [3] decomposes as
a sum of leaf scores of the different modules:

S =
∑

k

Sk

Sk =
∑

`

log

∫∫
dµdτ p(µ, τ)

∏
m→`

∏
i∈Ak

pµ,τ (xi,m),

(1)

where k runs over the set of modules and ` runs over
the leaves of the regression tree of module k; p(µ, τ)
is a normal-gamma distribution over the mean µ and
precision τ of the normal distribution pµ,τ , m → `

1

modnet bmc.tex 6 2006-08-10 08:30:29Z tomic

denotes the experiments that end up at leaf ` after
traversing the regression tree, and i ∈ Ak denotes
the genes i assigned to module k.

An optimal module network is found heuristi-
cally by starting from an initial clustering, and al-
ternatingly learning regression trees and reassigning
genes to modules, iterating until convergence of the
Bayesian score.

Learning regression trees

In [2, 3], regression trees are learned top-down by
considering all possible splits on all current leaves
with all possible candidate regulators that preserve
acyclicity of the network. Here we learn regression
trees for each module separately by a bottom-up hi-
erarchical clustering of the experiments. The hierar-
chical tree gives a nested set of partitions from which
the one with the highest score can be obtained. This
defines the locations where the tree has to be cut. In
a separate step, regulators are assigned to the inter-
nal nodes of the remaining tree.

At each step of the hierarchical clustering we
have a collection of binary trees {Tα}α whose leaves
consist of single experiments. By Eα ⊂ {1, . . . , M}
we denote the subset of experiments forming the
leaves of Tα. In considering a merge of two trees
Tα1

and Tα2
, we are interested in the possible score

gain

Sk(Eα1
∪ Eα2

) − Sk(Eα1
) − Sk(Eα2

), (2)

but to create a well balanced tree, we want to take
into account the size of the trees Tα1

and Tα2
, and

penalize the addition of small trees to already large
trees.

For a trivial tree Tm consisting of a single leaf,
Em = {m}, we set

Zm = eSk({m}),

and define recursively for a binary tree Tα with child
trees Tα1

and Tα2
, the quantity

Zα = eSk(Eα) + Zα1
Zα2

.

Note that

Zα =
∑

P∼Tα

eSk(P), (3)

where P ∼ Tα denotes the partitions generated by
the hierarchical subtree Tα and Sk(P) is the score of

the partition, defined as in eq. (1) with ` summing
over the different sets in P .

Then we define the merge score as

rα =
eSk(Eα)

Zα

=
1

1 + e−[Sk(Eα)−lnZα1
−ln Zα2

]
, (4)

and at each stage of the merging process merge those
trees Tα1

and Tα2
with the highest merge score, i.e.,

those trees for which

Sk(Eα1
∪ Eα2

) − ln Zα1
− ln Zα2

is largest.

As trees grow bigger, Zα will contain more and
more terms and therefore for a given score gain the
highest merge score will be between the smallest
trees, thus creating a well balanced tree. At the start
there are M trees and M(M −1)/2 possible merges.
In each subsequent step, the number of trees dimin-
ishes by 1, and in the list of possible merges, only
those between existing trees and the newly formed
tree have to be computed afresh.

To find recursively the highest scoring partition
among all partitions generated by the hierarchical
tree, note that for a given subtree Tα, the highest
scoring partition is either the trivial partition into
one set, or it is the union of the highest scoring par-
titions generated by the subtrees Tα1

and Tα2
. Hence

the optimal partition can be constructed explicitly
from the bottom up. Alternatively, to avoid overfit-
ting the data by deep regression trees, we can start
at the root and keep only those splits which signif-
icantly improve the score, i.e., keep a subtree split
Tα if

Sk(Eα1
) + Sk(Eα2

) − Sk(Eα) > ε,

for some cut-off ε ≥ 0.

Our method of hierarchical clustering is quite
similar to the Bayesian hierarchical clustering of [4],
except that in their method, partitions generated
by a subtree get a different weight in the form of a
prior probability, with partitions consisting of many
smaller sets getting a lower weight. We have found
that for our problem, giving equal weight to all par-
titions gives a slightly higher final score.

Regulator assignment

A given internal node Tα partitions its experiment
set Eα into two distinct sets Eα1

and Eα2
according

2

modnet bmc.tex 6 2006-08-10 08:30:29Z tomic

to the tree structure. Given a regulator r and split
value s, we can also partition Eα into two sets

R1 = {m ∈ Eα : xr,m ≤ s}

R2 = {m ∈ Eα : xr,m > s},

where xr,m is the expression value of regulator r in
experiment m.

Consider now two random variables: E which
can take the values α1 or α2, and R which can take
the values 1 or 2, with probabilities defined by sim-
ple counting, p(E = 1) = |Eα1

|/|Eα|, p(R = 1) =
|R1|/|Eα|, etc. We are interested in the uncertainty
in E given knowledge (through the data) of R, i.e.,
the conditional entropy [5]

H(E | R) =
|R1|

|Eα|
h(p1) +

|R2|

|Eα|
h(p2), (5)

where h is the entropy function

h(p) = −p log(p) − (1 − p) log(1 − p), 0 ≤ p ≤ 1,

and pi are the conditional probabilities

pi = p(E = α1 | R = i) =
|Eα1

∩ Ri|

|Ri|
, i = 1, 2.

The conditional entropy is nonnegative and reaches
its minimum 0 when p1 = 0 or 1 (and consequently
p2 = 1, resp. 0), which means the E and R parti-
tions are equal and the regulator – split value pair
‘explains’ the split in the regression tree exactly.

Hence to each intenal node of a regression tree
we assign the regulator – split value pair which mini-
mizes the conditional entropy (5) with the constraint
that the module network remains acyclic. Since this
assignment has to be done only once, after the mod-
ule networks score has converged, the best regulator
– split value pairs can be found by simply enumer-
ating over all possibilities, even for relatively large
data sets.

Because of the acyclicity constraint, the order in
which regulators are assigned to nodes can influence
the final result. Therefore we start by finding the
optimal regulators for the roots of all trees, and as-
sign regulators in the order of increasing entropy,

the lowest first. Whenever the assignment of the
best regulator to a root causes a cycle because of
the previous assignments, we find a new best one
that preserves acyclicity. After all the roots have
got a regulator, the procedure is repeated for all the
children of the roots, then for the children of the
children, etc. We work our way down the trees like
this because nodes higher in the trees will in general
have a higher minimal entropy (as the partitioning
is over more experiments), yet could be biologically
more significant (because they are responsible for
the most significant split between experiments), and
should therefore be assigned their favorite regulator
with higher probability.

Software
The latest version of SynTReN can be downloaded
from [6] and the latest version of Genomica from [7].

Authors contributions

Acknowledgements

References
1. Van den Bulcke T, Van Leemput K, Naudts B, van Re-

mortel P, Ma H, Verschoren A, De Moor B, Marchal K:
SynTReN: a generator of synthetic gene expression

data for design and analysis of structure learning

algorithms. BMC Bioinformatics 2006, 7:43.

2. Segal E, Shapira M, Regev A, Pe’er D, Botstein D, Koller
D, Friedman N: Module networks: identifying reg-

ulatory modules and their condition-specific regu-

lators from gene expression data. Nat. Genet. 2003,
34(2):166 – 167.

3. Segal E, Pe’er D, Regev A, Koller D, Friedman N: Learn-

ing module networks. Journal of Machine Learning Re-

search 2005, 6:557 – 588.

4. Heller K, Ghahramani Z: Bayesian hierarchical clus-

tering. In Proceedings of the twenty-second International

Conference on Machine Learning 2005.

5. Shannon C: A mathematical theory of communica-

tion. The Bell System Technical Journal 1948, 27:379
– 423, 623 – 656, [http://cm.bell-labs.com/cm/ms/what/
shannonday/paper.html].

6. SynTReN[http://homes.esat.kuleuven.be/∼kmarchal/
SynTReN/].

7. Genomica[http://genomica.weizmann.ac.il/].

3

--sourcefile-- --revision-- --time-- --owner--

Figures
Figure 1 - Sample figure title

A short description of the figure content should go here.

Figure 2 - Sample figure title

Figure legend text.

Tables
Table 1 - Sample table title

Here is an example of a small table in LATEX using \tabular{...}. This is where the description of the
table should go.

My Table
A1 B2 C3
A2
A3 .. .

Table 2 - Sample table title

Large tables are attached as separate files but should still be described here.

Additional Files
Additional file 1 — Sample additional file title

Additional file descriptions text (including details of how to view the file, if it is in a non-standard format
or the file extension). This might refer to a multi-page table or a figure.

Additional file 2 — Sample additional file title

Additional file descriptions text.

4

