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Together with AIDS/HIV and tuberculosis, human malaria represents 
one of the three most dangerous infectious diseases of humankind1. 
In 2007, 1.38 billion people were estimated to be at risk of infection 
with P. falciparum, the protozoan endoparasite responsible for up to 
2 million annual human deaths from malaria2,3. The lack of an effec-
tive vaccine and the rapid spread of resistance to most antimalarial 
drugs are major concerns for the control of this unicellular eukaryote. 
In particular, the complexity of the P. falciparum life cycle, which is 
associated with many unique morphological and metabolic states, has 
challenged efforts to identify parasite-specific molecular mechanisms 
that can be targeted by new malaria intervention strategies4.

The genome of P. falciparum encodes ~5,300 genes. This obligate 
endoparasite has lost many basic metabolic abilities, such as a major-
ity of the enzymes of amino acid synthesis, but expanded its reper-
toire of proteins involved in many parasite-specific functions, such 
as interaction with its host, antigenic variation and host-cell inva-
sion5. This is consistent with the difficulty in predicting functions 
for the majority of P. falciparum proteins. Genome-wide approaches 
offer an attractive method to accelerate functional annotation of the  
P. falciparum genome.

The haploid state of the genome throughout the majority of the  
P. falciparum life cycle and lack of inducible knockout or RNAi-
 mediated knockdown systems for this parasite limits the application 
of forward and reverse genetic approaches to assess gene function in 
this species6,7. Moreover, the low efficiency of the available transfec-
tion technologies makes genetic modification of P. falciparum too 
costly and time consuming for genome-wide analyses. Although 
the potential of systems biology approaches to derive functional 

gene predictions is widely appreciated8, previous efforts to predict 
the functions of uncharacterized P. falciparum gene products were 
based on gene interaction networks derived mainly from probabi-
listic integration of transcriptome data collected at different stages 
of the P. falciparum life cycle9–11. Largely because many genes with 
unrelated functions exhibit similar transcriptional profiles across the 
P. falciparum life cycle12,13, these approaches provided relatively low-
confidence predictions of gene function.

Although studies with model organisms such as yeast and 
Caenorhabditis elegans suggest that microarray analyses of global 
transcriptional responses to growth perturbations can substantially 
improve the accuracy and coverage of probabilistic interaction net-
works14,15, the utility of monitoring changes in gene expression in 
response to growth perturbations for predicting P. falciparum gene 
function has been controversial. Some perturbations, including those 
associated with several antimalarial drugs, such as chloroquine and 
several antifolates, induced only low-amplitude mRNA changes with 
no particular link to their presumed mode of action16,17. On the other 
hand, exposure of P. falciparum parasites to febrile temperatures18, 
artesunate19 and an inhibitor of sphingomyeline synthase20 induced 
biologically relevant transcriptional changes that led to the identifica-
tion of proteins associated with these processes.

Here we demonstrate that DNA microarray-based profiling of 
growth perturbations in P. falciparum can generate a high-resolution  
transcriptional data set that reflects functional relationships between 
P. falciparum genes. We use this data set to construct a gene inter-
action network that predicts the functions of 2,545 P. falciparum hypo-
thetical proteins with confidence levels comparable to those of similar 
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approaches applied for well-studied model organisms21,22. We focused 
mainly on the late stage (schizont) of the P. falciparum intraerythro-
cytic developmental cycle (IDC) to target the key process of parasite 
invasion and identified a subnetwork that encompasses 416 genes 
likely to participate in this process. Using a green fluorescent protein 
(GFP)-tagging approach, we demonstrate that 31 of 42 genes selected 
from the subnetwork localize within cellular compartments directly 
associated with host-cell invasion.

RESULTS
Transcriptional profiling of growth perturbations
We carried out microarray measurements of P. falciparum global 
transcriptional responses to 20 growth-inhibiting compounds (Fig. 1  
and Supplementary  Table  1). For each compound, synchronized  
P. falciparum cells were exposed to inhibitory concentrations (IC) of 50 (IC50) 

or 90 (IC90) determined individually for each drug and RNA samples  
were collected from multiple time points (Supplementary Table 1).

A total of 3,125 genes exhibited at least a threefold increase or 
decrease in transcript level after exposure to at least one chemical 
stimulus for at least one of the time points after initiating growth 
perturbation (Fig. 1 and Supplementary Table 2). Using a threefold 
change in transcript abundance as a cutoff for transcriptional mod-
ulation, we loosely classify the transcriptional responses into three 
compound classes.

The first class induced <50 genes (~1% of the genome) and had 
an overall transcriptional effect on <250 genes (~5% of the genome). 
This includes compounds like colchicine, Na3VO4, E64, leupeptin 
and two of the three tested antimalarial drugs, chloroquine and qui-
nine (Fig. 1). These results are reminiscent of those in reports that 
revealed unusually low levels of transcriptional responses to highly 
toxic antimalarial drugs16,17. Despite their low amplitudes, these 
responses were, however, highly reproducible and specific to each 
compound16,17. In agreement with this, we observed highly reproduc-
ible responses of P. falciparum to chloroquine (data not shown) that 
were also dose dependent (26, 49 and 87 genes were induced more 
than threefold and 194, 257 and 330 genes, more than twofold with 
IC50, IC90 and 2*IC90 concentrations, respectively).

We found only moderate overlap between our results and previ-
ously published data17,19. Compared with these studies, only 12.5% 
and 10% of the genes whose expression was altered by chloroquine 
and artemisinin, respectively, were also found to be differentially 
expressed. Differences in experimental design that might account 
for these dissimilarities may relate to the considerably higher drug 
concentrations used previously, different representations of the devel-
opmental stages in starting cultures (e.g., asynchronized parasites 
for chloroquine studies17) and different approaches to data analyses 
(e.g., filtering of genes with stage-specific expression in the artesu-
nate study19). Despite these discrepancies, our experiments and the 
previous published work showed genes with highly reproducible and 
dose-dependent responses to these malaria drugs. This suggests that, 
despite their low amplitudes and broad gene representations, tran-
scriptional changes in response to chemical stimuli may reflect physi-
ologically relevant processes involving functionally related genes.

The second class of compounds induced transcription of >50 
genes (~1%) and overall involved 250–500 genes (~5–10%). This 
includes inhibitors of calcium/calmodulin-dependent protein kinases 
(CDPK; ML-7 and W-7) and the calcineurin pathway (FK506 and 
cyclosporine A), all of which inhibited the development of the  
schizont stage (Supplementary Fig. 1). We observed striking similarities  
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Figure 1 Overview of the gene expression responses of P. falciparum to 
growth perturbation induced by drug or inhibitor treatments. The heatmap 
summarizes global transcriptional responses to 20 compounds conducted 
in 23 time-course experiments with a total of 144 microarrays. A total of 
3,125 genes that show at least a threefold change in mRNA abundance  
in at least one experiment are included in the overview data set. The  
color scale indicates upregulation or downregulation of each individual 
mRNA transcript compared to the corresponding time point in control 
untreated cells (Supplementary Table 1). The bar diagram (top) indicates 
the total number of genes that show more than threefold upregulation  
(red bar) or downregulation (green bar) in each treatment experiment.  
The number of up- and downregulated genes is also indicated. The treatment 
experiments were ordered according to the total number of genes with 
altered expression (more than threefold) and grouped (yellow dashed 
lines) according to the number of genes with altered levels of their mRNA 
levels (see text). The treatment experiments were conducted in the time 
courses indicated along the horizontal axis and genes were arranged using 
hierarchical clustering.
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in transcriptional responses induced by inhibitors within each class, 
which suggests that their inhibitory effect in P. falciparum may be very 
specific (Fig. 1). Moreover, there is only a limited overlap between 
the transcriptional responses induced by the CDPK and calcineurin 
inhibitors. This suggests that these two types of intracellular signaling 
pathways play specific, nonoverlapping roles in P. falciparum parasites 
that are both connected to transcriptional regulation.

The third class of compounds was able to induce transcription of 
>250 genes (~5%) and overall involved >500 genes (~10%). These 
include EGTA, phenylmethylsulfonyl fluoride, staurosporine, tri-
chostatin A and apicidin (Fig. 1). With the exception of apicidin, 
these responses were compatible with an arrest in IDC develop-
ment, indicating that the inhibitory effects of these compounds are 
associated with mechanisms that regulate the P. falciparum life cycle 
(Supplementary Fig. 2). In contrast, apicidin and to some degree 
trichostatin A (both histone deacetylase inhibitors) caused a general  
deregulation of the IDC transcriptional cascade by derepression 
of genes that are normally suppressed at both the trophozoite and  
schizont stages.

Reconstruction of a probabilistic gene functional network
To evaluate co-transcriptional properties of functionally related genes, 
we calculated the Pearson correlation coefficient (PCC) between tran-
scription profiles of a subset of 492 genes that can be assigned to 
at least one pathway defined by the Kyoto Encyclopedia of Genes 
and Genomes (KEGG)23. Overall, we observed a disproportionately 
high number of functionally related genes being transcriptionally co- 
regulated (PCC > 0.6) (Fig. 2a and Online Methods). In compari-
son with the P. falciparum IDC transcriptome12, the enrichment of 
functionally related genes was improved by 1.6-, 3.5- and 11-fold 

for the 0.7, 0.8 and 0.9 PCC thresholds, respectively (Fig. 2a). This 
high occurrence of transcriptional co-regulation among functionally 
related genes suggests a good potential of the perturbation data set 
for functional gene predictions. Hence, we used it as a core data set 
for the assembly of a probabilistic network in which we integrated 
this data set with additional inputs: (i) phylogenetic profiles with  
sequence homology values (E-values) of all 5,363 P. falciparum protein 
sequences to their orthologs in 210 sequenced genomes; (ii) domain-
domain interactions 24; and, (iii) yeast two-hybrid interactions25 (Fig. 2b  
and Online Methods). In addition, the perturbation microarray data 
were combined with the IDC transcriptomes from three P. falciparum 
laboratory strains26 and four field isolates27.

To reconstruct the probabilistic network, we used the KEGG gold 
standard data set to calculate the likelihood score of protein intera-
ction evidence from all four input data sets (Supplementary Table 3)  
and subsequently integrated these scores into the final score using 
a Bayesian integration approach (Fig.  2b and Online Methods). 
Overall, we established integrated likelihood scores for 14,168,597 
functional linkages between 5,374 P. falciparum proteins (99.2% 
of the proteome). In general, the integrated likelihood scores 
provided higher proteome coverage than each of the individual 
input data sets at all probability thresholds (Fig. 2c). In contrast 
to the domain-domain interaction data set, which provides high- 
accuracy predictions for a small proportion of the proteome (~10%), 
the transcriptome data and phylogenetic profiles can provide high 
proteome coverage. However, their predictive values are consistently 
lower. In our calculations, we observed low accuracy for the protein-
protein interaction data set based on the two-hybrid system25. This 
data set therefore provides a low contribution to the final likelihood 
scores (Fig. 2c).
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Figure 2 Reconstruction of the PlasmoINT 
interaction network. (a) The plot depicts the 
likelihood of functional relationships along the 
correlation of mRNA abundance profiles for 
all gene pairs in the microarray data. Pearson 
Correlation Coefficients (PCC) were calculated 
for every pair of the 492 P. falciparum genes 
with KEGG functional assignments in both 
perturbation data sets (Drug/inhibitor) and the 
IDC transcriptome12. The numbers of false-
positive (FP) and true-positive (TP) gene pairs 
in the high PCC bins are indicated in the inset 
table. (b) Flow chart describing assembly of the 
interaction network. The four input data sets 
were evaluated for protein interaction using a 
relevant scoring system and score values were 
tested against the KEGG benchmark to derive 
the interaction likelihood scores that were used 
as an input evidence for Bayesian integration. 
For more details on KEGG benchmark scoring 
and network building, see Supplementary 
Table 3. (c) The relationship between proteome 
coverage of the individual input data sets 
(microarray data, phylogenetic profiles, domain-
domain interaction and yeast two-hybrid 
system) and TP/FP ratio thresholds illustrates 
the contribution of each individual input to the 
integrated network data set. (d) The predictive 
precision rates (positive predictive value, 
PPV) at different likelihood score cutoffs were 
evaluated by tenfold cross-validation and plotted against the proteome coverage. Each dot of the ratio represents an average of ten cross-validations at 
a particular likelihood score cutoff. The vertical dashed line shows the likelihood score cutoffs and proteome coverage corresponding to the PPV (PPV = 
TP/(TP + FP)) 50% and 90% (likelihood score thresholds (LS) of 3 and 14.5). At these ratios, TP/FP was equal to 1 (~50% confidence) and 9 (~90% 
confidence), respectively. 
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Figure 3 MCL- and WNC-based functional predictions and their functional categorizations. (a) Summary of the 208 MCL clusters depicted as a 
scatter plot with the number of genes plotted against their coherence score. Coherence score 0 corresponds to MCL cluster without any functionally 
characterized proteins. Examples of three clusters with high- and medium-coherence scores are indicated in the scatter plot and also drawn (below) with 
the functionally characterized (purple) and hypothetical proteins (yellow) linked by edges that correspond to functional links with >90% confidence. 
(b) The conservation of different functional pathways across 210 genomes including 155 prokaryotes, 6 apicomplexa and 49 other eukaryotes is 
summarized and indicated for selected functional gene groups (for the full list, see Supplementary Table 5). The conservation of each pathway is 
calculated independently as the fraction of the number of species containing potential homologs (reciprocal BLASTP hit, E-value ≤ 10−10) according to 
four categories: total 210 genomes (the second panel, blue bar), apicomplexa (third panel, red bar), prokaryotes plus apicomplexa (fourth panel, green 
bar) and eukaryote plus apicomplexa (right panel, orange bar). Pathways were classified into five categories: genes specific to P. falciparum (cluster I),  
genes conserved in apicomplexa (II), genes conserved in apicomplexa and prokaryotes (III), genes conserved in apicomplexa and other eukaryotes (IV) 
and genes conserved in all 210 genomes (V). The total number of functionally characterized and hypothetical genes in each category are displayed 
similarly to a. Api-eukaryote, genes conserved in apicomplexans and eukaryotes; api-prokaryote, genes conserved in apicomplexans and prokaryotes.
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Using the calculated functional linkages, we assembled two intera-
ction networks based on likelihood score thresholds that correspond 
to 50% (339,721 linkages for 89% of proteome) and 90% confidence 
precision rates (72,748 linkages for 68% of proteome) (Fig. 2d and 
Online Methods).The connectivity of both the 50% and 90% confi-
dence networks fits a power-law distribution with power (λ) values 
of 0.93 and 1.14, respectively (Supplementary Fig. 3). This distribu-
tion represents a typical scale-free network, well-known for protein-
protein interaction networks in eukaryotic cells28: a small number of 
highly connected nodes (hubs) are linked to a larger number of less 
connected nodes and so on.

Modular analysis and network-based functional predictions
In the next step, we used two parallel approaches to explore the assem-
bled network for the prediction of P. falciparum hypothetical protein 
function. First, we used the Markov cluster (MCL) algorithm29 to 
define significant clusters of highly interconnected genes in the net-
work. We used a coherence score to test enrichment of every single 
cluster for genes involved in a particular pathway. This analysis not 

only tests the quality of the network but also generates functional 
 predictions for hypothetical genes that fall into these clusters (Fig. 3a). 
For this work, we used the 90% confidence network to provide the 
most conservative assessment of the network quality. Second, we used 
the weighted neighbor-counting (WNC) method to derive functional 
prediction for the hypothetical proteins. For this, we explored the 50% 
confidence network to maximize the number of functional predic-
tions for hypothetical proteins. The confidence of these predictions 
was assessed by a ‘leave-one-out’ analysis30 that is based on the effi-
ciency of recalling functional predictions of previously characterized 
genes (Supplementary Fig. 4).

MCL identified 208 modules in the 90% confidence network, result-
ing in 3,029 genes being assigned to at least one of the 106 modules 
with functional assignments (Fig. 3a and Supplementary Table 4). 
The MCL modules represent many pathways conserved across the 
eukaryotic species (e.g., RNA metabolism) or specific to P. falciparum  
(e.g., proteins exported to the host cell cytoplasm, “exported  
proteins”), as well as coherent functional groups (e.g., transporters)  
(Fig. 3a). The functions of 1,376 hypothetical genes can be predicted  
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by their association to these modules, whose confidence is 
 represented by the coherence scores. The MCL analysis suggests 
that the assembled network detects functionally related genes with 
sufficient precision. The WNC approach allows (functional) explo-
rations of unknown genes even outside of the identified modules 
and generated predictions for 2,545 hypothetical proteins (95% in  
the genome) that can be assigned to 216 functional terms 
(Supplementary Fig. 5 and Supplementary Table 5).

Taking advantage of the phylogenetic profiles (see above), we inves-
tigated the overall evolutionary conservation of the derived func-
tional groups with the newly assigned genes (Fig. 3b). Only a small 
number of functional gene groups are restricted to P. falciparum and 
exhibit either no or low sequence homology to genes in other organ-
isms, including closely related apicomplexan species. The majority 
of these represent the subtelomeric gene families encoding several 
classes of surface antigens, such as var, rifin and stevor, and proteins 
associated with Maurer’s clefts (Fig. 3b, cluster I). Parasite invasion 
dominates the functional cluster that is highly conserved among api-
complexans but diverges from all other eukaryotic and prokaryotic 
species (Fig. 3b, cluster II). Cluster III depicts several P. falciparum 
functions that have a prokaryotic origin such as steroid biosynthesis 
(a term assigned by KEGG, corresponding to P. falciparum isopre-
noid synthesis), translation in genes of the mitochondria and apico-
plasts (non-photosynthetic plastids found in most Apicomplexa) 
and three homologs of proteins involved in subtilisin protease activ-
ity. Moreover, the WNC analysis assigned many new proteins to the 
majority of the highly conserved functional groups that are either of 
eukaryotic (cluster IV) or prokaryotic origin (cluster V). It is possi-
ble that many of the newly annotated genes represent evolutionarily 
diverse factors of these otherwise well-conserved, and thus potentially 
essential, pathways. The precision rates for these functional terms 
provide a measure of confidence for these functional predictions  
and help to identify candidates for previously unrecognized  
molecular factors that are essential for the growth, development  
and virulence of P. falciparum.

Proteins implicated in P. falciparum merozoite invasion
Invasion of the host’s red blood cells by a specialized invasive form 
called the merozoite is a key step in the P. falciparum life cycle. To vali-
date the predictive potential of our approach, we explored the utility 
of our network to identify genes associated with merozoite invasion. 
Merozoite invasion involves multiple molecular mechanisms ranging 
from specific ligand-receptor interactions, actin-myosin motility, pro-
tease activities, protein translocation and signaling31–33. It is mediated 
by an unknown number of proteins and is of high interest for drug 
and vaccine development because interference with this crucial bio-
logical process holds the potential to disrupt the parasite’s life cycle. 
Although >50 proteins have been previously linked with this process, 
gaps remain in our understanding of the molecular mechanisms that  
mediate the entire invasion process. To provide a comprehensive  
picture of the invasion process, we generated a subnetwork of pro-
teins that are directly connected to 25 previously established invasion- 
associated proteins in the 90% confidence interaction network (Fig. 4a).  
Overall, this subnetwork contains 418 proteins, including 155 with 
a predicted function and 263 hypothetical proteins (Supplementary 
Table 6). The subnetwork compiles the majority of proteins previ-
ously linked with invasion-like apical organelle proteins, glycosyl-
phosphatidylinisotol-anchored surface proteins, actin-myosin motor 
components and signal transduction proteins. It also includes 43 out  
of 56 proteins recently predicted to be associated with cellular  
compartments of the merozoite invasion machinery33. Finally, 230 out 

of all 263 hypothetical proteins represented in the invasion subnetwork 
were also predicted by WNC as merozoite invasion factors.

For the functional validations, we initially selected 70 proteins from this 
invasion process protein subnetwork. For this selection, we prioritized 
proteins with a high WNC score (Supplementary Table 5) and gene length 
≤2 kb (to facilitate cloning and expression of these proteins in P. falciparum 
transfection experiments). Open reading frames were fused with GFP and 
expressed ectopically in P. falciparum under the control of an appropriate 
promoter mimicking the expression profile of the endogenous allele34.  
Of these, 63 proteins could be expressed as GFP-fusion proteins in trans-
genic parasites, of which 42 resulted in a defined intracellular localization 
(Fig. 4 and Supplementary Fig. 6b). From the remaining 21 GFP fusions, 
11 were not expressed at sufficient levels and 10 were discarded because of 
retention in the endoplasmic reticulum that might be caused by the bulky 
GFP moiety, as described previously34 (data not shown).

The remaining 42 proteins can be grouped according to their locali-
zation (Fig. 4b,c). The largest group consists of 20 proteins that showed 
a predominantly apical distribution in maturing schizonts and in free 
merozoites after rupture (Fig. 4d,e and Supplementary Fig. 6a). The 
second group is represented by four proteins with GFP distributed in 
the periphery of the parasite (Fig. 4f,g and Supplementary Fig. 6a). 
The third group (7 proteins) localizes to the inner membrane complex 
(IMC)35, a membranous system underlying the plasma membrane 
and involved in the structural integrity and motility of invasive para-
sites35–37. These proteins display a unique spatial dynamic during 
schizogony reflecting the biogenesis of this compartment (Fig. 4h,i, 
Supplementary  Fig.  6a and Supplementary  Movies  1–3). The 
remaining 11 proteins revealed localizations that are not obviously 
associated with invasion, although this does not exclude them from 
playing a role in this process (Supplementary Fig. 6a,b). Examples 
are proteins that localize to the cytosol including the putative kinase 
PFC0945w and the profilin homolog PFI1565w. In summary, 31 out 
of 42 selected proteins are associated with structures known to be 
directly involved in invasion. This demonstrates that the functional 
predictions based on our approach can lead to the identification of 
new putative targets for malaria intervention strategies.

DISCUSSION
Until now, the potential of using transcriptional profiling of growth per-
turbation for functional analyses of malaria parasites has been underap-
preciated. We demonstrate that functionally related genes share similar 
transcriptional profiles to a diverse panel of chemical perturbations, 
which suggests that many of these genes share regulatory mechanisms 
responsive to external stimuli (Fig. 2a). This suggests that transcrip-
tional profiling may be a viable approach for functional genomics of 
human malaria parasites and can provide insights into parasite biology. 
Although mRNA decay was proposed to make a major contribution to 
the regulation of gene expression in P. falciparum38, our data suggest that 
the responses to chemically induced growth perturbations are associated 
with transcription39, rather than mRNA stability. We find essentially no 
relationship between our mRNA profiles and the previously established 
pattern of mRNA decay (data not shown).

The sensitivity of P. falciparum transcription to chemical stimuli 
has enabled us to make gene-function predictions not included in 
previous network-based approaches10,11,40. Our 90%-confidence net-
work (termed PlasmoINT) contains close to 6 times more linkages 
and 2.5 times more proteins than PlasmoMAP10, hitherto the most 
reliable published P. falciparum interaction network. In addition, 
there are five times as many linkages, which are supported by two or 
more types of evidence (Supplementary Table 7). These additions 
can be attributed mainly to the extensive transcriptional data and 
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inclusion of the annotations from the functional genomic database, 
the Malaria Parasite Metabolic Pathways41. This enables us to provide  
more accurate reconstructions of the majority of metabolic and 
cellular pathways (Supplementary Fig. 7) and thus more confident 
functional gene predictions. We also compared the Gene Ontology 
(GO) terms assigned to the P. falciparum genes by PlasmoINT with 
those assigned by the ontology-based pattern identification (OPI) 
method40. There is, however, only a limited congruity between these 
two studies with only 13%, 22% and 37% of the genes matching the 
predictions between the OPI and PlasmoINT-assigned GO terms at 
4th, 3rd, and 2nd level, respectively. Although the relatively low level 
of consistency between these two methods is surprising, it is worth 
noting that the 47% recall precision of PlasmoINT contrasts (Online 
Methods and Supplementary Fig. 4), with only 18% precision for 
OPI. Similarly, the increased precision of the PlasmoINT prediction 
may result from the inclusion of the perturbation data set, which 
captures the finer pattern of transcriptional regulation in response 
to growth perturbation compared to the development stage–specific 
expression used by OPI. In addition to the supplementary mate-
rial, the data presented in this manuscript have been compiled to 
a searchable database available online (http://zblab.sbs.ntu.edu.sg/),  
which we plan to update periodically.

As invasion of the host cell is essential for survival of P. falciparum 
and is a key target for new malaria intervention strategies, we used 
the functional annotations obtained from our interactome to experi-
mentally validate proteins predicted to be associated with the invasion 
process. Of the 42 proteins that could be localized in the parasite, 31 
were predominantly targeted either to the apical organelles, the para-
site periphery or the IMC (Fig. 4 and Supplementary Fig. 6): all key 
compartments for host cell invasion. Interestingly, 11 out of the 31 
proteins contain neither a predicted signal peptide nor a transmem-
brane domain. Both of these are characteristic for proteins previously 
associated with the invasion machinery, highlighting the power of this 
approach. For instance, network prediction enabled us to identify novel 
proteins associated with the IMC such as MAL13P1.228, PF14_0578 
or PFE1130w. This notion is further supported by the identification 
and localization of PFB0570w and PFD1105w, two proteins previously 
associated with the rhoptries, (exocytotic organelles containing many 
proteins with adhesive functions42,43), PF10_0348 and PF10_0352, 
two proteins of the merozoite surface protein super-family44,45, and 
MAL13.P1.130 and PFD1110w, two newly localized IMC proteins46,47. 
Further confirmation of the utility of this study came from the identi-
fication and localization of PFD0230c. This unique serine protease was 
recently identified in a forward chemical genetic screen as one of the key 
regulators for merozoite egress48. Although it will be crucial to further 
validate these novel proteins and to extend their characterization, this 
subnetwork of proteins predicted to be involved in invasion offers a 
comprehensive blueprint of this process at the molecular level. These 
results may be useful for functional studies of each identified protein 
and rational drug and vaccine development.

METHODS
Methods and any associated references are available in the online version 
of the paper at http://www.nature.com/naturebiotechnology/.

Accession codes.  Gene Expression Omnibus: GSE19468.

Note: Supplementary information is available on the Nature Biotechnology website.
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Building the interaction network Integration of the data sets by the Bayesian 
probabilistic model was carried out as previously described10. In principle, the 
final likelihood score is determined as: 

Likelihood Score(LS) LS LS LS LS= × × ×PPC PHY PPI Domain

PPC, microarray input; PHY, phylogenetic profile input; PPI, yeast two-hybrid 
input; Domain, domain-domain interaction input.

We performed a tenfold cross-validation to evaluate the overall perform-
ance of the prediction. Briefly, first the positive and negative benchmarks 
were randomly divided into ten separate equal sets, and nine of them were 
used as the training set to calculate the likelihood scores and the remaining 
one set as the test to identify the positives and negatives. We ran this process 
ten times so that each of the ten sets was a test set and the remaining nine 
constituted the training set. Finally, all true positives (TP) and false positives 
(FP) were summed up under different likelihood score cutoffs to evaluate 
the ratio of true positives to false positives. The positive predictive values 
(PPV=TP/(TP+FP)) were calculated as the fraction of true positives to the 
total number of true positive and false positive (Fig. 2d).

The modular analysis and the weighted neighbor counting for network-
based gene function prediction. We searched the local modules in the network 
using the Markov Cluster (MCL) algorithm, which is a fast and scalable unsu-
pervised graph clustering algorithm52. To define the parameter of granularity, 
we followed a previously published method53 by optimizing the functional 
coherence and size of the clusters54. The networks and subnetworks were 
designed and visualized using Cytoscape 2.5 (ref. 55).

The neighbor-counting method weighted by the likelihood score was used 
for the functional gene predictions in which the likelihood score of each linkage  
could represent the functional similarity between two proteins: 

f(i,j) LS(m) (j)/ LS(m)= ∑ ∑δ

where the f(i,j) is the probability of gene i having function j. The LS(m) is the 
likelihood score of the mth neighbor of gene i. δ(j) = 1 if the gene has function 
j, else δ(j) = 0. Without threshold, we assigned an unannotated protein with k 
functions having the top k statistic scores. The performance of the predictions 
were evaluated by plotting precision against recall over various thresholds as 
described56. For a given threshold, precision and recall are defined as: 

Precision / Recall /i
V

i, i, i
V

i,= ∑ ∑ = ∑ ∑k m k niβ β β

where ni is the number of known functions of protein i; mi,β is the number of 
functions predicted for protein i at threshold β and ki,β is the number of functions 
predicted correctly for protein i . V is the set of all functionally known genes.

DNA constructs, transfection and intracellular localizations. PCR amplifica-
tion for the GFP constructs was carried out using cDNA with the gene-specific 
primers summarized in Supplementary Table 8. PCR products were digested 
with KpnI and AvrII and ligated into the transfection vector pARLama-1-GFP34. 
To avoid cytotoxic effects due to overexpression of the putative proteases, only  
1 kb N-terminal fragments of PF08_0108 and PFD0230c were cloned. To ensure 
late expression, the promoter of the ama-1 gene was used to drive transcription. 
P. falciparum asexual stages (3D7) were transfected as described previously57. 
Positive selection for transfectants was achieved using 10 nM WR99210.

The western blot analyses were carried out as previously described58 
using the mouse anti-GFP (1:1000, Roche) and sheep anti-mouse IgG 
horseradish peroxidase (1:3000, Roche). Images of unfixed GFP-expressing  
parasites were captured using a Zeiss Axioskop 2plus microscope with 
a Hamamatsu Digital camera (ORCA C4742-95) using Zeiss axiovision 
software. Immunofluorescence microscopy was performed on 4% formal-
dehyde/0.0075% glutaraldehyde-fixed parasites incubated for 1 h with primary  
antibodies in the following dilutions: rabbit anti-MSP-1 (1:2,000), rabbit anti-
GAP45 (1:2,000) and rabbit anti-EBA-175 (1:2,000). Subsequently, cells were 
incubated with Alexa-Fluor 594 goat anti-rabbit IgG or Alexa-Fluor 488 goat 
anti-mouse IgG antibodies (1:2,000, Molecular Probes) and with DAPI at  
1 µg/ml (Roche).

ONLINE METHODS
Parasite culture, treatment and microarray. The perturbation time courses 
were performed with 2% hematocrit and 5% parasitemia cultures. Parasites 
were treated with appropriate drug or compound concentrations and col-
lected at 5–8 time points taken at regular time intervals (30–120 min). A total 
of 247 microarray experiments were carried out, including 29 drug treatment 
time courses with 20 compounds and corresponding untreated controls from 
different drug or inhibitor treatment (Supplementary Table 1). Genome-wide 
gene expression profiling was conducted using long oligonucleotides repre-
senting all 5,363 P. falciparum genes as previously described49. The expression 
data were normalized using linear normalization and background filtering 
as implemented by the NOMAD database (http://derisilab.ucsf.edu) and 
described12. Subsequently each gene profile was represented by an average 
expression value calculated as an average of all oligonucleotides represent-
ing a particular gene. For the final data set we considered only the genes 
for which at least 80% of time points in each time course yielded a positive 
expression signal.

For the final microarray input data sets for the reconstruction of the gene 
functional network, we incorporated the perturbation data set with the IDC 
transcriptome of laboratory strains (3D7, Dd2 and HB3, 148 microarray 
experiments)12 and four lab isolates27. To indicate the strength of functional 
association of each gene pair by gene expression profiles, PCCs were calculated 
independently across each data set first and intergraded by a new technique 
that we term the “optional average” method. Briefly, Fisher’s z-transform50 
was used to average two PCCs from two independent IDC transcriptomes 
and compared to the PCC from perturbation data. If the latter is smaller, 
the final PCC is the PPC from perturbation data. Otherwise, the final PCC 
is equal to the average PCC from two tested data sets defined by the Fisher’s 
z-transform.

The input data sets for the network construction. For the network assembly 
we incorporate the microarray data set (above) with three additional inputs.  
(i) The phylogenetic profiles were calculated for all P. falciparum genes obtained 
from the PlasmoDB version 5.4 (http://www.plasmodb.org/download/).  
Using BLASTP, the protein sequences of P. falciparum were compared with 
210 reference organisms, including 155 prokaryotes and 55 eukaryotes 
available from the NCBI and the ENSEMBL. For each protein a vector was 
generated with elements pij where pij = −1/logEij where Eij represents the  
E-value of the gene (i) ortholog in the genome (j). As a metric of phylogenetic 
profile similarity, the mutual information was calculated with the histograms 
of pij values, binned in 0.01 intervals, as previously described51. The mutual 
information scores were divided into 15 bins for the KEGG benchmark test 
(Supplementary Table 3). (ii) For the domain-domain interaction evidence, 
we carried out Hidden Markov Model–based predictions of all functional 
domains defined by the PFAM database in all 5,363 P. falciparum proteins. 
For this we use the set of domain-domain interactions as defined previously24. 
Based on the confidence scores provided by the Lee database24, the gene pairs 
were subsequently divided into six bins and tested against the KEGG bench-
mark. (iii) From the yeast two-hybrid system protein-protein interactions 
were obtained from the previous publication25 and all 2,811 interactions 
among 1,308 P. falciparum proteins were tested against the KEGG benchmark 
as one bin (Fig. 2b).

Calculation of the likelihood scores using the KEGG gold standard bench-
mark data set. The KEGG ‘gold standard’ benchmark data set includes 492 
annotated P. falciparum genes that can be assigned to 71 metabolic or cellular 
pathways defined by the KEGG database23. This defines 11,046 positive pairs 
of genes that belong to pathways with >3 genes. The negative set includes 
61,721 gene pairs that do not fall into a common pathway. Supplementary 
Table 3 online shows the parameters of naive Bayesian network of all data sets 
based on this reference data set. The ratio of true to false positive in Figure 2c  
is calculated using the KEGG benchmark data set and it reflects measure of 
agreement of the functional relationship of each gene pair as a function of the 
individual scoring systems (e.g., PCC for microarray data and phylogenetic 
profiling). The calculated likelihood scores reflect the functional relationships 
between P. falciparum genes and are applicable as input values for assembling 
a probabilistic interactome network.
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