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Unraveling transcription regulatory networks
by protein–DNA and protein–protein
interaction mapping
Albertha J.M. Walhout
Program in Gene Function and Expression and Program in Molecular Medicine, University of Massachusetts Medical School,
Worcester, Massachusetts 01605, USA

Metazoan genomes contain thousands of protein-coding and noncoding RNA genes, most of which are differentially
expressed, i.e., at different locations or at different times during development, function, or pathology of the
organism. Differential gene expression is achieved in part by the action of regulatory transcription factors (TFs) that
bind to cis-regulatory elements that are often located in or near their target genes. Each TF likely regulates many
targets in the context of intricate transcription regulatory networks. Up to 10% of a genome may encode TFs, but
only a handful of these have been studied in detail. Here, I will discuss the different steps involved in the mapping
and analysis of transcription regulatory networks, including the identification of network nodes (TFs and their target
sequences) and edges (TF–TF dimers and TF–DNA target interactions), integration with other data types, and
network properties and emerging principles that provide insights into differential gene expression.

Metazoan genomes contain thousands of protein- and RNA-
encoding genes. Some genes are ubiquitously expressed, whereas
others are expressed in a tightly controlled manner in only part
of the organism, or under particular conditions during develop-
ment or disease. In order to understand how differential gene
expression is controlled at a genome-wide or systems level, it is
important to identify all the cis-acting regulatory sequences and
trans-acting factors involved, and how and when they interact to
affect gene expression.

Differential gene expression can be regulated at the tran-
scriptional and at the post-transcriptional level by three types of
trans-acting factors (Fig. 1). Regulatory transcription factors (TFs)
can activate or repress transcription by physically interacting
with genomic cis-regulatory DNA elements that can be located in
gene promoters, or at a greater genomic distance in enhancers, or
in introns (Fig. 1A).

RNA binding proteins can interact with specific cis-
regulatory RNA elements, for instance, that are located in the 3�

untranslated region of an mRNA molecule (Fig. 1B). The binding
of RNA binding proteins regulates differential gene expression at
the post-transcriptional level, by affecting transcript localization,
translation, or degradation (for reviews, see Hieronymus and Sil-
ver 2004; Keene and Lager 2005).

microRNAs exclusively repress gene expression by physi-
cally interacting, through hybridization, with cis-regulatory ele-
ments located in the 3� untranslated region of their target mRNAs
(Fig. 1B). This hybridization results in the inhibition of transla-
tion and/or decreased mRNA stability (Ambros 2004; Du and
Zamore 2005). Thus, TFs, RNA binding proteins, and microRNAs
physically interact with their target genes, either at the DNA or at
the mRNA level. Such regulator-target interactions are now being
systematically mapped and modeled into regulatory networks.
Because information about many genes and TFs is assembled into
a single network model, transcription regulatory networks pro-

vide insight into the principles and properties that control dif-
ferential gene expression at a systems level, rather than at the
level of individual genes.

What is a regulatory network?

Network models are composed of nodes and edges that describe
relationships between nodes. In biological networks, the nodes
are bioactive macromolecules such as proteins, DNA, RNA, and
metabolites (Barabasi and Oltvai 2004). Two types of regulatory
networks can be distinguished: transcription regulatory networks
and post-transcription regulatory networks (Fig. 2). Each of these
types of networks can be subdivided into physical and functional
networks. Physical networks contain protein–protein, protein–
DNA, protein–RNA, and/or RNA–RNA interactions (Fig. 2A,C).
Functional networks incorporate the consequences of these
physical interactions, e.g., activation or repression of gene ex-
pression (Fig. 2B,D). Ultimately, transcription and post-
transcription regulatory networks need to be combined to obtain
a comprehensive picture of all aspects of the regulation of differ-
ential gene expression in complex metazoan systems (Fig. 2E).

In this review, I will focus on the mapping of transcription
regulatory networks. I will discuss the identification of predicted
TFs and cis-regulatory sequences, i.e., network nodes, and the
protein–protein and protein–DNA interaction mapping ap-
proaches that are being used to identify physical interactions
between these nodes, i.e., network edges. I will discuss several
emerging insights and hypotheses that can be derived from such
networks, and the future challenges that lie ahead in this rapidly
evolving field.

Identifying network nodes

Transcription regulatory networks contain two types of nodes:
regulatory TFs and their target DNA sequences. Many different
strategies have been employed to identify both types of nodes,
including computational and experimental methods.
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Regulatory transcription factors

Regulatory TFs are composed of at least two types of domains: a
DNA binding domain, which serves to interact with its cognate
DNA target sequence, and a transcription regulation domain,
which serves to activate or repress transcription (Fig. 1A). TFs are
grouped into families based on their predicted DNA binding do-
mains. To date, more than 100 different DNA binding domains
have been found (Kummerfeld and Teichmann 2006). These do-
mains have been used to computationally predict which genes in
a genome of interest encode regulatory TFs. However, computa-
tional prediction alone is insufficient to obtain comprehensive
and high-quality TF predictions. For instance, we recently ob-
tained a high-quality compendium of Caenorhabditis elegans TFs
by a combination of computational prediction and extensive
manual curation (Reece-Hoyes et al. 2005). By doing so, the num-
ber of false positive and false negative predictions was drastically
reduced. It should be feasible to obtain such comprehensive pre-
dictions for other organisms, including human, as well. How-
ever, even manually curated collections are likely incomplete as
not all DNA binding domains have yet been uncovered. For ex-
ample, both yeast and C. elegans proteins that bind DNA but that
do not possess a known DNA binding domain have recently been
retrieved (Hall et al. 2004; Deplancke et al. 2006).

TF predictions have led to the observation that, in increas-
ingly complex metazoan organisms, a larger proportion of the
genome encodes TFs, compared with relatively simple, unicellu-
lar eukaryotes. For instance, the genome of the unicellular yeast

Saccharomyces cerevisiae encodes ∼200 predicted TFs (Harbison et
al. 2004), which is ∼3% of all protein-coding genes; the relatively
simple metazoan nematode C. elegans contains 934 predicted
TFs, which is ∼5% of all protein-coding genes (Reece-Hoyes et al.
2005); and more complex eukaryotes such as humans may de-
vote up to 10% of their coding power to regulatory TFs (Levine
and Tjian 2003).

TFs interact with different types of DNA sequences, includ-
ing promoters and cis-regulatory modules, and, within such
larger elements, bind to specific cis-regulatory elements or TF
binding sites. Considerable efforts are underway to identify each
of these elements in order to decipher the “regulatory code” that
controls differential gene expression. For instance, the ENCODE
(ENCyclopedia of DNA elements) Consortium aims to identify all
functional elements in the human genome (ENCODE Project
Consortium 2004). So far the efforts of this consortium have
focused on 1% of the genome, or 30 Mb of sequence, which
contains ∼600 predicted protein-coding genes. In order to gain

Figure 1. Regulators of gene expression physically interact with their
targets. (A) Transcriptional regulation. Regulatory TFs function by binding
to proteins and to DNA. Black boxes, exons; blue squares, cis-regulatory
DNA elements; red ellipses, TFs; arrow, transcription start site. Curved
arrows indicate activation of gene expression and blunt “arrow” indicates
transcriptional repression. AD, transcription activation domain; RD, tran-
scription repression domain; DB, DNA binding domain. (B) Post-
transcriptional regulation. RNA binding proteins and microRNAs function
by directly interacting with their target mRNAs. Arrow, transcription start
site; purple box, microRNA gene; green line, 3� UTR of target microRNA
(purple line); yellow circle, RNA binding protein. Upstream regulation of
miRNA expression (by the pink TF binding to the light blue element) is
indicated and connects transcriptional and post-transcriptional gene
regulation.

Figure 2. Regulatory networks. (A) Protein–DNA and protein–protein
interaction network involving regulatory TFs and their target genes. (B)
Protein–RNA, protein–protein, and microRNA–RNA interaction network
involving RNA binding proteins and their target mRNAs and microRNAs
and their target mRNAs. (C) Transcription regulatory networks. The tran-
scriptional consequences of the protein interactions shown in A are in-
cluded. (D) Post-transcription regulatory networks. The effects of the pro-
tein interactions shown in B on target gene expression are included. (E)
Combined transcription and post-transcription regulatory networks. Red
nodes, TFs; blue nodes, target genes; green node, a gene can be a target
gene and encode a TF; yellow nodes, RNA binding proteins; purple
nodes, microRNAs. Black edges, protein–DNA interactions; dashed
edges, protein–RNA interactions; red edges, microRNA–RNA interactions;
blue edges, protein–protein interactions. Arrows, activation; blunt “ar-
row,” repression.
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insight into the regulatory code of a genome, one of the first
steps is to comprehensively identify all gene promoters.

Promoters

A gene promoter is defined as the regulatory sequence (a few
hundred base pairs) that is located immediately upstream of the
transcription start site (for review, see Maston et al. 2006). Eu-
karyotic protein and microRNA-encoding gene promoters are
composed of two parts: a proximal promoter that serves as a
recognition sequence for the pre-initiation complex and RNA
polymerase II, and a distal promoter that performs a regulatory
function by interacting with regulatory TFs. The identification of
promoters is relatively straightforward in unicellular eukaryotes
such as S. cerevisiae as its genome is compact (Goffeau et al. 1996):
It contains very few introns and short intergenic regions (median
length shorter than 400 bp). Hence, the intergenic regions con-
tain most cis-regulatory elements and can be used as a proxy for
gene promoters when transcription start sites have not been pre-
cisely mapped. Since the genomes of higher eukaryotes contain
longer intergenic regions with many repeat sequences, and be-
cause transcription start sites are often poorly defined, it is more
difficult to accurately pinpoint metazoan gene promoters. More-
over, higher eukaryotic genes may frequently be regulated from
multiple, alternative promoters.

Several experimental approaches have been developed for
transcription start site and, thus, promoter annotation. First, full-
length cDNA sequencing has led to the annotation of thousands
of transcripts for both the murine and human genome (Imanishi
et al. 2004; Carninci et al. 2005). Second, the use of genome-wide
tiling arrays has enabled the identification of 5� and 3� bound-
aries of transcripts (Carninci et al. 2005). Third, cap analysis of
gene expression (CAGE) has been used to more precisely define
transcription start sites in mammalian promoters (Carninci et al.
2006). Fourth, chromatin-immunoprecipitations (see below)
with anti-TFIID and anti-RNA polymerase II antibodies have
been used to identify many active human promoters (Kim et al.
2005a,b). Finally, by transient transfection assays, 387 gene pro-
moters from the ENCODE regions that drive gene expression in
at least one of 16 different cell-lines were identified (Cooper et al.
2006). Although a lot of progress has been made, it is likely that
highly sensitive experimental methods need to be developed to
identify promoters that are rarely active.

Cis-regulatory modules

Many gene promoters have been identified to date. However, the
genome-wide identification of enhancers and silencers in higher
eukaryotes has been relatively slow. This is because they can be
located at a great genomic distance from the target’s transcrip-
tion start site(s) and can be found upstream, downstream, or
within introns (for review, see Maston et al. 2006).

It has been postulated that functional TF binding sites often
occur in clusters and form cis-regulatory modules (Davidson
2001). Recently, this hypothesis has been utilized by several
groups for the computational prediction of cis-regulatory mod-
ules that may constitute enhancers or silencers (Aerts et al. 2003;
Sharan et al. 2003; Gupta and Liu 2005; Blanchette et al. 2006;
Hallikas et al. 2006). The methods used by these groups provide
powerful tools to search for cis-regulatory modules containing
consensus binding motifs for TFs for which the recognition se-
quence has been mapped. However, to date such information is
only available for a limited number of TFs.

In addition to using computational tools to predict regula-
tory sequences, experimental methods can be used for the dis-
covery of cis-regulatory modules (for review, see Elnitski et al.
2006). For instance, the observation that the genome is more
accessible to DNaseI when TFs are bound, leading to DNaseI hy-
persensitive sites, can be used to identify cis-regulatory modules.
Until recently, the unbiased, genome-wide mapping of such sites
has been hampered by a lack of high-throughput “readout”
methods that can be used to map such sites onto genome se-
quences. Several groups have already made significant progress
toward this goal, for instance by combining DNaseI treatment
with microarrays or massive parallel sequencing (Dorschner et al.
2004; Crawford et al. 2006a,b; Sabo et al. 2006). Integration with
other types of data will be necessary to delineate the function of
each DNaseI hypersensitive site and to find the transacting fac-
tors that bind to these sites.

TF binding sites and cis-regulatory elements

For a thorough understanding of transcription regulatory net-
works, it is not only important to find promoters and cis-
regulatory modules, but also to precisely map the cis-regulatory
elements located within these longer sequences. Individual cis-
regulatory elements are short (usually <20 bp) DNA sequences
that interact directly with regulatory TFs. Such TF binding sites
have traditionally been mapped using a combination of deletion
analyses and reporter gene expression (see, e.g., Davidson et al.
2002). However, such methods are not readily adaptable to high-
throughput settings.

Recently, several methods have been employed to compu-
tationally identify putative cis-regulatory elements (Fig. 3) (for
review, see Elnitski et al. 2006). The first method is based on the
hypothesis that genes that are coexpressed under a particular
condition are subject to control by the same TF(s). The advent of
gene expression analysis by microarrays greatly facilitated the
identification of coexpressed genes (DeRisi et al. 1997). Using a
variety of computational algorithms, the regulatory regions of
coexpressed genes can be interrogated for the occurrence of over-
represented DNA sequences that may constitute binding sites for
the TF responsible for the coexpression (for information and per-
formance on such algorithms, see Tompa et al. 2005).

The second method, referred to as phylogenetic footprint-

Figure 3. Different approaches that can be used for the identification
of cis-regulatory DNA elements are highly complementary and intercon-
nected. Cis-regulatory elements can be identified by interrogating the
regulatory regions of coexpressed genes, by phylogenetic footprinting,
or by experimentally identifying TF binding sites.
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ing, is based on the conservation of functional cis-regulatory el-
ements in closely related organisms. This method has been used
to identify putative elements in yeast (Cliften et al. 2001, 2003;
Kellis et al. 2003), Drosophila melanogaster (Glazov et al. 2005),
and human genomes (Bejerano et al. 2004; Siepel et al. 2005;
Woolfe et al. 2005; Xie et al. 2005). In addition to using compu-
tational tools to find putative cis-regulatory elements in com-
plete genome sequences, experimentally mapped consensus TF
binding motifs (see below) can also be used to interrogate a ge-
nome sequence of interest. However, depending on the length of
the motif, many functional and nonfunctional sequences will be
identified. Phylogenetic footprinting and coexpression can then
be used to determine which motifs have a higher likelihood of
being functional in vivo (Fig. 3; Elnitski et al. 2006).

Only a small portion of all TF binding sites that occur in a
genome of interest have been identified to date. For instance, by
comparative genomics, Xie and colleagues found 174 candidate
DNA motifs that likely correspond to numerous TF binding sites
in human promoters (Xie et al. 2005). However, these different
elements may only represent ∼10% of all TF binding motifs as the
human genome may encode more than 2000 TFs (Levine and
Tjian 2003), each of which likely binds DNA with different speci-
ficity and affinity. On the other hand, it is likely that some TFs
from one family may have overlapping binding specificities, and
that therefore the number of different TF binding motifs may be
considerably less than 2000. In addition, certain TFs may exclu-
sively bind to regulatory elements that are located in transcrip-
tional enhancers or silencers. These TF binding motifs will be
missed in studies that focus solely on promoter sequences.

The computational prediction of cis-regulatory modules has
relied on the observation that TF binding sites are often clus-
tered. However, the generality of this phenomenon has not been
investigated and, thus, it is not clear how many functional, non-
clustered TF binding sites occur in the genome. In addition, most
researchers have focused on elements that are conserved between
related species. Such phylogenetic footprinting likely increases
the specificity of motif finding. However, the sensitivity will suf-
fer from only interrogating conserved sequences because many
important, species-specific elements are not conserved. The suc-
cess of phylogenetic profiling for the identification of functional
regulatory elements also depends on the evolutionary distance
between the organisms used in the analysis: The use of closely
related species may result in relatively low specificity and the use
of distantly related species may result in high specificity, but
relatively low sensitivity (Ruvinsky and Ruvkun 2003).

Identifying network edges

TF–TF dimers

Many TFs bind their target genes as dimers. For instance, bZIP,
bHLH, and nuclear hormone receptor TFs all dimerize. The com-
prehensive identification of TF dimers requires the use of pro-
tein–protein interaction detection methods that can be used in
(semi) high-throughput settings. One assay that is particularly
suited to identify binary protein–protein interactions is the yeast
two-hybrid system (Fields and Song 1989), and multiple putative
TF homo- and heterodimers have already been found using this
system (Li et al. 2004; Reece-Hoyes et al. 2005; Rual et al. 2005;
Stelzl et al. 2005). Putative TF dimers have also been identified by
protein arrays. For instance, Newman and Keating tested >2400
combinations of human bZIP protein–protein interactions and

found multiple putative dimers (Newman and Keating 2003).
Finally, 15 putative yeast TF–TF heterodimers have been identi-
fied by large-scale TAP-TAG purification methods (Gavin et al.
2006; Krogan et al. 2006).

Only a small portion of all TF dimers has been identified to
date. For instance, <10% of all predicted TFs are present in the
current C. elegans protein–protein interaction network (Li et al.
2004), even though at least 30% of all TFs belong to the bZIP,
bHLH, or nuclear hormone receptor families (Reece-Hoyes et al.
2005). Since TF dimerization may be condition-dependent, many
TF dimers have also likely been missed by TAP-TAG assays in
yeast. In the future, it will be important to comprehensively map
all dimerization interactions between TFs and to incorporate this
information into network models (Fig. 2).

Interactions between TFs and their target genes/sequences

Protein–DNA interactions between TFs and their target DNA se-
quences can be mapped using two conceptually different strate-
gies. First, one can identify for a TF or set of TFs of interest, the
target genes, and/or cis-regulatory elements these TFs bind to.
Alternatively, one can take a DNA sequence as a starting point
and aim to identify the TFs that can interact with this sequence.
We refer to these strategies as “TF-centered” and “gene-centered”
methods, respectively (Fig. 4A; Deplancke et al. 2006).

TF-centered protein–DNA interaction mapping
The most widely used protein–DNA interaction mapping meth-
ods are TF-centered, and most are based on chromatin-

Figure 4. High-throughput methods for protein–DNA interaction
mapping. (A) protein–DNA interactions can be mapped using either TF-
or gene-centered methods, as indicated by the arrows. Y1H, yeast one-
hybrid assays; ChIP, chromatin-immunoprecipitations; PBM, protein
binding microarray; B1H, bacterial one-hybrid system; Dam-ID, DNA ad-
enine methytransferase-ID. (B) ChIP is the most commonly used TF-
centered method. It is based on the precipitation of a TF (blue) and its
associated DNA fragments (red) using an anti-TF antibody (purple). Mul-
tiple readouts of the precipitated DNA can be used, including PCR with
specific primers, tiling microarrays (chip), cloning and sequencing, and
paired-end ditag sequencing. (C) Y1H assays are based on interactions of
hybrid “prey” proteins with a DNA “bait” of interest. The hybrid protein
consists of a protein that can bind DNA (blue) and a heterologous tran-
scription activation domain (AD, yellow). The use of such a domain en-
ables the identification of both activators and repressors of transcription.
The readout for a protein–DNA interaction is the expression of one or
more reporter genes. Prey identity is determined by PCR and sequencing.
In high-throughput Y1H assays, vectors containing Gateway recombina-
tion sites (GW) are used to enable standardized cloning from promoter-
ome resources.
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immunoprecipitation (ChIP) (for review, see Elnitski et al. 2006).
In ChIP assays an anti-TF antibody is used to precipitate DNA
bound by the TF in vivo (Fig. 4B). These DNA fragments can
subsequently be identified and quantified using a variety of read-
outs, including PCR, microarrays (referred to as ChIP-on-chip),
and cloning/sequencing as in SAGE-like methods (serial analysis
of gene expression, Fig. 4B; for review, see Blais and Dynlacht
2005; Elnitski et al. 2006). For yeast ChIP-on-chip assays, endog-
enous TFs were replaced by hybrid proteins in which the TFs were
fused to a universal protein tag (Lee et al. 2002). Thus, almost 200
individual yeast strains were created, each carrying a different
TF-TAG fusion protein. The advantage of this strategy is that the
same antibody can be used for each TF. ChIP-on-chip has been
used to identify target sequences for most yeast TFs under stan-
dard laboratory growth conditions (Lee et al. 2002). In addition,
target binding has been examined under multiple experimental
conditions for a subset of these TFs (Harbison et al. 2004; Work-
man et al. 2006). In addition to yeast, ChIP-on-chip has been
used for a variety of mammalian TFs by using tissue culture cells
(Cawley et al. 2004; Carroll et al. 2005; Bieda et al. 2006). So far,
only a few studies focused on the DNA binding of metazoan TFs
in their natural environment. For instance, in a pioneering study,
endogenous promoters bound by HNF1a, HNF4a, and HNF6
within human liver and pancreas were identified (Odom et al.
2004). Similarly, by a combination of computational target pre-
diction and ChIP-on-chip, many target promoters bound by
CREB were identified in both tissue culture cells and primary
hepatocytes (Zhang et al. 2005). ChIP-on-chip was also used to
identify promoters bound by the TFs OCT4, SOX2, and NANOG
in human embryonic stem cells (Boyer et al. 2005). Finally, ChIP-
cloning (i.e., the cloning and sequencing of precipitated DNA)
was used to identify in vivo target genes for the C. elegans FOXO
TF, DAF-16 (Oh et al. 2005).

In DamID, a TF is fused to Escherichia coli DNA adenine
methyltransferase (Dam) and expressed in tissue culture cells or
intact model organisms (van Steensel and Henikoff 2000). Upon
binding of the TF to DNA, the surrounding nucleotides are meth-
ylated. This methylation can be detected by PCR or microarrays
after immunoprecipitation of methylated DNA. DamID has
mainly been used to identify the DNA targets of general chroma-
tin-binding proteins, but has also been used to dissect the Dro-
sophila Myc TF network (Orian et al. 2003).

In protein-binding microarrays, a TF is fused to GST, ex-
pressed in bacteria or yeast, purified, and hybridized to a double-
stranded DNA array that contains DNA sequences of interest
(Mukherjee et al. 2004). To date, this method has been used to
find targets for the yeast TFs Abf1, Rap1, and Mig1. The target
sequences were then used to identify the consensus TF bind-
ing sites for each of these factors. DIP-ChIP can also be used to
identify consensus TF binding sites. This method uses naked
genomic DNA and a purified TF. Briefly, after incubation of the
DNA with the factor, an immunoprecipitation is performed
and TF-associated DNA is identified by microarray analysis (Liu et
al. 2005). Although both DIP-chip and PBM are carried out in
vitro, the TF binding sites obtained were in very good agreement
with data obtained using in vivo methods, suggesting that they
are effective and rapid methods to identify TF binding specifici-
ties, and, perhaps, affinities (Mukherjee et al. 2004; Liu et al.
2005).

In bacterial one-hybrid assays, a plasmid encoding a TF of
interest is transformed into bacteria containing a library of ran-
dom DNA elements (Meng et al. 2005). Binding of the TF to a

specific element is selected on specific media and positive colo-
nies are analyzed by sequencing. After aligning multiple se-
quences bound by an individual TF, its recognition sequence can
be derived. This sequence can then be used to search the genome
to identify putative TF target genes. Since TF binding sites are
generally short, many of such sequences will occur in a genome,
only some of which will likely be functional.

Gene-centered protein–DNA interaction mapping
Eukaryotic genomes encode hundreds of putative TFs, of which
only a handful has been analyzed by TF-centered methods. The
identification of protein–DNA interactions involving uncharac-
terized, predicted TFs has recently been facilitated by the devel-
opment of high-throughput, gene-centered protein–DNA inter-
action mapping methods, such as yeast one-hybrid (Y1H) assays.
The Y1H system was first developed to facilitate the identifica-
tion of proteins that can bind to multiple copies of a short DNA
sequence of interest (the “DNA bait”) (Li and Herskowitz 1993;
Wang and Reed 1993). This method is not suitable for the unbi-
ased, comprehensive mapping of protein–DNA interactions with
longer DNA fragments because the cis-regulatory elements that
contribute to gene expression are only known for a few genes,
and because the system was based on traditional, restriction en-
zyme-based cloning methods. To enable the unbiased, large-scale
detection of protein–DNA interactions, we developed a high-
throughput version of the Y1H system (Fig. 4C; Deplancke et al.
2004). This system is compatible with Gateway cloning, a recom-
binational cloning system by which many fragments (i.e., DNA
baits) can be cloned simultaneously (Hartley et al. 2000; Walhout
et al. 2000). This Y1H system can be used with single copy gene
promoters as DNA baits and, therefore, allows the unbiased iden-
tification of TF-promoter interactions without prior knowledge
about the cis-regulatory elements that reside within the pro-
moter. The system is compatible with “promoterome” resources,
collections of Gateway-cloned promoters, for the high-
throughput cloning of DNA baits (Dupuy et al. 2004). The Gate-
way-compatible Y1H system also makes use of Gateway-
compatible “protein prey” resources. For instance, mini-libraries
consisting solely of predicted TFs can be created and screened
successfully. This is important as TFs that are expressed at low
levels or in only a few cells in an organism are difficult to retrieve
from standard cDNA libraries (Deplancke et al. 2004). Recently,
we used the Gateway-compatible Y1H system to map a first C.
elegans gene-centered protein–DNA interaction network, con-
taining 283 protein–DNA interactions between 72 promoters and
117 proteins, 107 of which encode predicted C. elegans TFs and
10 of which may be novel DNA binding proteins (Deplancke et
al. 2006).

As with any large-scale, high-throughput method, protein–
protein and protein–DNA interactions will be missed and
wrongly identified by each of the methods discussed. Some of
these methods identify interactions that do occur in vivo (e.g.,
ChIP with endogenous TFs) and others find interactions that can
occur (e.g., in vitro methods, yeast two-hybrid and yeast one-
hybrid assays). Protein–DNA interactions that occur infre-
quently, i.e., in a few cells or during a short time period in de-
velopment or disease, will likely be missed by the first methods
but may be found by the second. However, interactions found by
the second do not necessarily occur in vivo. To assure the gen-
eration of high-quality data sets, it is desirable to filter protein–
protein and protein–DNA interaction data, and to only include
high-confidence interactions, i.e., interactions that are likely rel-
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evant. Such criteria have previously been used for large-scale pro-
tein–protein interaction maps, generated by high-throughput
yeast two-hybrid assays (Li et al. 2004; Rual et al. 2005; Stelzl et
al. 2005), and we have recently devised stringent criteria to filter
Y1H data (Deplancke et al. 2006). In summary, both sensitivity
and specificity are important issues to consider when choosing a
protein–protein or protein–DNA interaction identification
method, and the choice depends on the question being ad-
dressed. As the various methods are highly complementary, it is
desired, in the long term, to use a multitude of techniques for
comprehensive, high-quality protein–protein and protein–DNA
interaction mapping.

Emerging concepts and future challenges

Large sets of protein–protein and protein–DNA interactions can
be visualized as network models using various freely available
software packages, including Cytoscape (Shannon et al. 2003)
and N-browse (Lall et al. 2006).

Network models serve multiple purposes. For instance, they
provide a great tool for the visualization and navigation of large
interaction data sets. In addition, networks can be analyzed at
different levels, i.e., at the level of the network as a whole, the
level of subgraphs and network motifs, and the level of indi-
vidual nodes or edges. By doing so, they enable the derivation of
hypotheses regarding different levels of gene expression.

Network analysis

Once visualized, networks can be analyzed topologically using
different network parameters such as connectivity, path length,
clustering coefficient, etc. (For review, see Barabasi and Oltvai
2004). As has been observed for other networks, transcription
regulatory networks are highly connected and display a scale-free
degree distribution (Albert et al. 2000), i.e., they contain a small
number of disproportionately highly-connected nodes, or hubs,
and many less-well connected nodes (Guelzim et al. 2002; Lee et
al. 2002; Luscombe et al. 2004; Deplancke et al. 2006). Transcrip-
tion regulatory networks potentially contain two types of hubs:
TF hubs (TFs that bind many promoters) and promoter hubs
(promoters that interact with many TFs). Interestingly, transcrip-
tion regulatory networks predominantly contain TF hubs, rather
than promoter hubs (Guelzim et al. 2002; Deplancke et al. 2006).
As in other networks, such hubs provide integrity to the network:
When nodes are randomly removed, the network stays con-
nected. However, when hubs are sequentially removed the net-
work disintegrates rapidly (for review, see Barabasi and Oltvai
2004). The biological implication of this became apparent when
it was demonstrated that TF hubs have a higher tendency to be
essential for the organism (Jeong et al. 2001; Yu et al. 2004; De-
plancke et al. 2006).

We recently mapped a protein–DNA interaction network of
genes expressed or involved in the C. elegans digestive tract (De-
plancke et al. 2006). By visualizing and analyzing this network,
we can derive hypotheses at different levels of gene regulation.
For instance, we observed that the network is highly connected,
contains several TF hubs, and is enriched for TFs expressed in the
digestive tract (Fig. 5A; Deplancke et al. 2006). In addition, we
found that most promoters are bound by a combination of TF
hubs and less well-connected TFs, some of which may be master
regulators. This led to a model in which we propose that C. el-
egans transcription is regulated by a layered organization of TF
function (Fig. 5A; Deplancke et al. 2006). The digestive tract is

predominantly composed of the pharynx and intestine, each of
which is derived from distinct germlayers. We found that TF
hubs interact with both pharyngeal and intestinal genes. This
suggests that these TFs function as global regulators of gene ex-
pression and leads to the prediction that they interact with pro-
moters of large numbers of genes that are expressed in other
tissues as well.

In addition to hypotheses regarding gene regulation at the
level of an entire network and system, one can also derive hy-
potheses by zooming into network subgraphs.

Network subgraphs

Network subgraphs can be network modules, motif clusters, or
other network neighborhoods. A network module can be defined
as a subgraph consisting of highly interconnected nodes that
may fulfill a particular biological function. Network modularity
has been observed in yeast regulatory networks (Ihmels et al.
2002; Bar-Joseph et al. 2003; Segal et al. 2003; Luscombe et al.
2004), although there are few modules that can be clearly sepa-
rated from the main network component (Babu et al. 2004). This
may be because individual yeast TFs may function in multiple,
apparently unrelated pathways. These observations suggest that
regulatory networks of higher eukaryotes such as C. elegans may
be organized in modules as well but that these modules share
multiple TFs. This hypothesis is in agreement with our observa-
tion that many C. elegans TFs are expressed in multiple tissues
(Deplancke et al. 2006).

Figure 5B shows an example of a subgraph of the C. elegans
digestive tract protein–DNA interaction network that can be used
to derive specific biological hypotheses. This subgraph is com-
posed of multiple bifan motifs (see below for network motifs) of
the TF hubs DIE-1 and ZTF-1 and their target promoters. Inter-
estingly, these TFs share 22 promoters, which is 73% of their
combined targets (Fig. 5B). This leads to the prediction that DIE-1
and ZTF-1 have a similar biochemical function: For instance,
they may have similar DNA binding motifs. The observation that
they do not share all of their targets suggests that the motifs are
not completely identical. Interestingly, these proteins share no
homology in their primary amino acid sequence but both pro-
teins do contain two pairs of C2H2 zinc fingers that are separated
by a long amino acid sequence. The observation of shared targets
also leads to the prediction that these two TFs may share biologi-
cal functions. However, while knockdown of DIE-1 is lethal,
ZTF-1 is dispensable for the function of the organism. In contrast,
we could not create stable transgenic lines expressing ZTF-1, sug-
gesting that overexpression of this protein may be lethal (De-
plancke et al. 2006). Whereas DIE-1 can activate gene expression
(Deplancke et al. 2006), the transcriptional function of ZTF-1
remains to be elucidated.

Network motifs

Network motifs are the building blocks of networks (Milo et al.
2002). Several motifs are overrepresented in experimentally de-
rived transcription regulatory networks compared with random
networks (Milo et al. 2002; Shen-Orr et al. 2002). Such motifs
provide insights into the properties of networks and the propa-
gation of regulatory signals. As such, the analysis of network
motifs may help to uncover the biochemical functions of both
TFs and their target genes. For instance, feed forward loops are
overrepresented in transcription regulatory networks of various
organisms (Milo et al. 2002; Shen-Orr et al. 2002). This may not
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be surprising as such loops offer a rapid gene expression output,
for example in response to outside signals. In contrast, feed-back
or autoregulatory loops can either reinforce or diminish a tran-
scriptional output, whereas single input motifs can confer strong
coexpression of downstream target genes (Shen-Orr et al. 2002).
The analysis of each TF and the network context in which it
functions will be important to unravel how each factor contrib-
utes to differential gene expression.

Network motifs can also be used to derive specific biological
hypotheses, either for individual promoters, or TFs. For instance,
we found a single input motif in which ZTF-2 interacts specifi-
cally with the promoters of five pharyngeal genes (Deplancke et
al. 2006). This led to the prediction that ZTF-2 is a regulator of
pharyngeal gene expression and that these promoters share a
pharyngeal gene element to which ZTF-2 binds. We tested these
hypotheses experimentally and found that ZTF-2 is itself ex-
pressed in the pharynx (and elsewhere), and that a knockdown of
ztf-2 results in a pharyngeal phenotype. Furthermore, we used
the five promoter sequences to define a ZTF-2 binding motif and
found that it is highly similar to a previously described pharyn-

geal gene element. Finally, we demonstrated that ZTF-2 represses
expression of its pharyngeal targets and that it can bind the pha-
ryngeal element in vivo. Taken together, the mapping, analysis
and deconvolution of a protein–DNA interaction network into
subgraphs and motifs can be used to derive biological hypotheses
regarding differential gene expression at different levels.

Future challenges

The transcription regulatory networks that are currently available
are likely to be a small representation of all the interactions that
occur in vivo. Even in yeast, where binding of each TF has been
examined under standard laboratory conditions and binding of a
few under multiple conditions (Lee et al. 2002; Harbison et al.
2004; Workman et al. 2006), the regulatory information is likely
far from complete. This is because many conditions remain to be
tested and because TFs that bind DNA with low specificity or
affinity may be difficult to analyze. The transcription regulatory
networks that have been mapped in higher eukaryotes represent
an even smaller sample of the entire network. This is because so

Figure 5. Deriving biological hypotheses from regulatory networks. (A) A protein–DNA interaction network of C. elegans digestive tract genes was
used to derive a three-layered model of transcription regulation. Reprinted with permission from Elsevier © 2006, Deplancke et al. 2006.(B) Example of
a protein–DNA interaction network subgraph. (C) Example of a protein–DNA interaction network motif. See main text for details.
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far (1) ChIP-on-chip assays mainly utilized arrays containing
probes corresponding to promoter regions and, thus, TF binding
to cis-regulatory modules located elsewhere in the genome will
be missed; (2) only very few TFs have been examined by TF-
centered methods; (3) <1% of all promoters in C. elegans have
been examined by gene-centered methods (Deplancke et al.
2006), and, finally, not all cis-regulatory elements and TF binding
sites have been identified either computationally (Xie et al. 2005)
or experimentally (Mukherjee et al. 2004; Meng et al. 2005).

Cis-regulatory elements or TF binding sites are often found
in intergenic regions. When intergenic regions are short (i.e., in
yeast and C. elegans) and reside between genes that are tran-
scribed from opposite strands, perhaps by bidirectional promot-
ers, it is difficult to infer which of the two genes will be affected
through such regulatory sequences. Similarly, in the genomes of
higher eukaryotes, cis-regulatory modules can be located far from
a transcribed unit and it may be difficult to infer the gene that is
controlled by the cis-regulatory module. In the future, it will be
important to scan larger genomic regions, both in cis and in trans
for genes that can be affected by different individual cis-
regulatory modules.

From protein–DNA interaction networks to transcription
regulatory networks

Networks that are solely based on protein–protein and protein–
DNA interactions do not contain regulatory information because
the protein–protein and protein–DNA interaction detection
methods discussed above do not provide insight into the conse-
quences of physical interactions (e.g., activation or repression of
transcription). The transcriptional consequences of protein–DNA
interactions need to be superimposed onto protein–DNA inter-
action networks by integrating interaction data with other data
types (Deplancke et al. 2006). This can be done either at the level
of individual interactions using detailed and often labor-
intensive methods such as quantitative RT-PCR and RNAi (Baugh
et al. 2005; Oh et al. 2005; Deplancke et al. 2006) or at the net-
work level by integration with other large data sets, such as ex-
pression profiles (Lee et al. 2002; Segal et al. 2003; Yu et al. 2003;
Luscombe et al. 2004). In the future, it will be important to de-
velop methods that can be used to map, at a large scale, the
transcriptional activity of each TF.

Spatio-temporal network modeling

Protein–protein and protein–DNA interaction networks and tran-
scription regulatory networks are static models of all the tran-
scriptional events that can occur in a system of interest. To fully
understand how such networks contribute to system develop-
ment, function, and pathology, it is important to unravel where
and when which parts of the network are active and what the
biological consequences of this activity are (Davidson et al.
2002). Such analysis has again been pioneered in yeast. For in-
stance, the binding of the cell cycle regulatory TF complexes SBF
and MBF has been analyzed during different phases of the cell
cycle (Horak et al. 2002). It was found that these TFs bind to and
regulate many other TF-encoding genes that are involved in cell
cycle progression and/or differentiation. In addition, more ex-
tensive networks that are active under different endogenous and
exogenous experimental conditions were compiled (Luscombe et
al. 2004). Surprisingly, it was found that these different subnet-
works have different topological properties and motifs that may
reflect their particular function. In the future, it will be important

to extrapolate where and when which parts of transcription regu-
latory networks are active in higher eukaryotes as well.

Longer term, transcription regulatory networks need to be
integrated to model more comprehensive regulatory networks in
which transcription regulation of the expression of both protein-
coding and microRNA-encoding genes is combined with gene
regulation by both RNA binding proteins and microRNAs (Fig.
2E). Such networks need themselves to be integrated with spatio-
temporal information about gene expression and TF/microRNA
activity and with phenotypes conferred by TFs and microRNAs to
obtain a comprehensive picture about regulatory networks and
how they control the development, function, and pathology of
complex metazoan systems.
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