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Models of mammalian regulatory networks controlling 
gene expression have been inferred from genomic data, 
yet have largely not been validated. We present an 
unbiased strategy to systematically perturb candidate 
regulators and monitor cellular transcriptional responses. 
We apply this approach to derive regulatory networks 
that control the transcriptional response of mouse 
primary dendritic cells (DCs) to pathogens. Our approach 
revealed the regulatory functions of 125 transcription 
factors, chromatin modifiers, and RNA binding proteins 
and constructed a network model consisting of two dozen 
core regulators and 76 fine-tuners that help explain how 
pathogen-sensing pathways achieve specificity. This study 
establishes a broadly-applicable, comprehensive and 
unbiased approach to reveal the wiring and functions of a 
regulatory network controlling a major transcriptional 
response in primary mammalian cells. 

Regulatory networks controlling gene expression serve as 
decision-making circuits within cells. For example, when 
immune dendritic cells are exposed to viruses, bacteria or 
fungi, they respond with transcriptional programs that are 
specific to each pathogen (1)and are essential for establishing 
appropriate immunological outcomes (2). These responses are 
initiated through specific receptors, such as Toll-like 
receptors (TLRs), that distinguish broad pathogen classes, 
and are propagated through well-characterized signaling 
cascades (2). However, how the transcriptional network is 
wired to produce specific outputs remains largely unknown. 

Two major observational strategies have associated 
regulators with their putative targets on a genome scale (3): 
cis-regulatory models rely on the presence of predicted 
transcription factor binding sites in the promoters of target 

genes (3–5), whereas trans-regulatory models are based on 
correlations between regulator and target expression (3–6). 
Since promoter binding sites and correlated expression are 
weak predictors of functional regulator-target linkages, such 
approaches are limited in their ability to produce reliable 
models of transcriptional networks (3). A complementary 
strategy is to systematically perturb every regulatory input 
and measure its effect on expression of gene targets. This 
strategy has been successfully employed in yeast (7-9) and 
sea urchin (10), but not in mammals. 

A perturbation-based strategy for network 
reconstruction. We developed a perturbation strategy for 
reconstructing transcriptional networks in mammalian cells, 
and applied it to determine a network controlling the 
responses of DCs to pathogens (Fig. 1). First, we profiled 
gene expression at nine time points following stimulation 
with five pathogen-derived components and identified 
specific and shared genes that respond to each stimulus (fig. 
S1A). We used these profiles to identify 144 candidate 
regulators whose expression changed in response to at least 
one stimulus (SOM) (fig. S1B, top). We also identified a 
signature of 118 marker genes (fig. S1B, bottom) that 
captures the complexity of the response. We generated a 
validated lentiviral shRNA library for 125 (of the 144) 
candidate regulators (fig. S1C, top), used it to systematically 
perturb each of the regulators in DCs, stimulated the cells 
with a pathogen component, and profiled the expression of 
the 118 gene signature (11) (fig. S1C, bottom). Finally, we 
used the measurements from the perturbed cells to derive a 
validated model of the regulatory network (fig. S1D). 

Gene expression programs in response to TLR 
agonists. We measured genome-wide expression profiles in 
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DCs exposed to PAM3CSK4 (‘PAM’), a synthetic mimic of 
bacterial lipopeptides, polyI:C, a viral-like dsRNA, LPS, a 
purified component from Gram negative E. coli, 
gardiquimod, a small molecule agonist, and CpG, a synthetic 
ssDNA. These compounds are known agonists of TLR2, 
TLR3, TLR4, TLR7 and TLR9, respectively. PolyI:C also 
activates MDA-5, and LPS can also act through co-receptors 
such as CD14. We therefore refer to the ligands rather than 
their receptors for clarity. Based on pilot experiments (fig S2, 
SOM), we measured mRNA expression at 0.5, 1, 2, 4, 6, 8, 
12, 16, and 24 hours following stimulation with these 
pathogen components.  

The observed transcriptional responses were classified into 
a ‘PAM-like’ program and a ‘polyI:C-like’ program, as well 
as a shared response (24.5% shared by PAM/polyI:C/LPS). 
The LPS response (Fig. 2, A and B, and fig. S3) was largely 
the union of the ‘PAM-like’ and ‘polyI:C-like’ programs. 
This is partly explained by the known signaling pathways 
activated by these agonists. PAM binds TLR2 and signals 
through the MYD88 pathway; polyI:C binds TLR3 and 
MDA-5 and signals mostly through the TRIF and IPS-1 
pathways, respectively; and LPS binds TLR4 and co-
receptors and uses both pathways (12). It is also consistent 
with the known induction of an anti-viral response by polyI:C 
and LPS (13). The ‘PAM-like’ program is enriched for NFκB 
and inflammatory responsive genes (P<6.1*10-8), whereas the 
‘polyI:C-like’ program is enriched for IRFs, viral- and 
interferon-responsive genes (ISGs, P<8.3*10-24). We thus 
term them the ‘inflammatory-like’ and ‘anti-viral-like’ 
programs. A small number of genes are specific to a single 
stimulus. For example, ~250 genes are polyI:C-specific (1250 
are shared with LPS), including several Type I IFNs (e.g. 
IFNA2, IFNA4, Fig. 2A). Surprisingly, 82% of the 
gardiquimod (TLR7) and CpG (TLR9) response was shared 
with the LPS response, but with a weaker anti-viral 
component (fig. S4). This observation is unexpected given 
their different signaling mechanisms (14), but is highly 
reproducible and robust (fig. S4, SOM). 

Identification of candidate regulators and a response 
signature. To select potential regulators that mediate the 
observed transcriptional response, we focused on regulator 
genes whose expression changes during pathogen sensing (a 
reasonable assumption for many mammalian responses (15, 
16), including pathogen-sensing (1, 4). First, we 
reconstructed an observational trans-model of gene regulation 
(figs. S1B, top, S5A, SOM), that associated 80 modules of 
co-regulated genes with 608 predictive regulators (4, 17, 18) 
(SOM, fig. S5B), automatically chosen out of a curated list of 
3287 candidate regulators (SOM). Filtering identified 117 
regulators above a minimal expression signal in at least one 
experiment (fig. S5B). These included known regulators from 
the NFΚB, STAT and IRF families as well as unexpected 

candidates such as the circadian regulator Timeless and the 
DNA methyltransferase Dnmt3a. Second, we added 5 
constitutively expressed regulators whose cis-regulatory 
elements are enriched in the responsive genes (SOM). Third, 
to capture delayed responses or nonlinear relations, we 
incorporated 22 regulators with at least a 2-fold change in 
expression. This resulted in 144 candidate regulators, with a 
distribution of expression patterns similar to the general 
response (figs. S6–S8 and table S1), The regulators’ 
expression under LPS was conserved between DCs and 
functionally similar macrophages, (Pearson correlation r~0.9 
at 1h, fig. S9A) as well as between human macrophages and 
mouse DCs (r~0.6 at 2h, fig. S9B) supporting the functional 
relevance of the regulators’ transcription. 

To identify highly informative reporter genes for 
monitoring the effects of perturbing regulators, we devised 
GeneSelector (fig. S10A, table S2, SOM). GeneSelector 
incrementally chooses genes (from our full expression 
dataset) whose expression profile improves our 
discrimination of stimuli given the previously chosen genes. 
Using this approach, we identified the optimal time point (six 
hours post activation, fig. S10B) and a set of 81 genes that 
distinguishes the stimuli (SOM). We added 37 candidate 
regulators with detectable expression at the 6h time point, 
creating a signature of 118 genes. Finally we added 10 
control genes whose expression levels were unchanged under 
all stimuli, but whose (constant) basal levels varied from very 
low to high.  

Perturbations, profiling and modeling. We generated 
validated lentiviral shRNAs that knocked down expression of 
125 of our 144 candidate regulators by at least 75% (fig. S11, 
table S3, SOM) and 32 shRNAs with no known gene targets 
as controls in bone marrow DCs (fig S12, fig S13, table S4, 
SOM). To carry out our perturbational study, we selected a 
single treatment, LPS, that activates the majority of both the 
‘inflammatory-like’ and ‘anti-viral-like’ programs. Following 
stimulation of shRNA-perturbed DCs with LPS for six hours, 
we used nCounter (11) to count transcripts of the 118 reporter 
and 10 control genes. 

The changes in signature gene expression resulting from 
infection with each shRNA were used to construct a model 
that associated regulators to their targets. We expect increases 
in the transcript levels of reporter genes whose repressors are 
targeted by knockdown, and decreases in reporters whose 
activators are targeted. Our False Discovery Based (FDR) 
model estimates the significance of a change in transcripts in 
DCs infected with a given shRNA (SOM). We control for 
gene-specific noise by comparing to changes in the 
expression of each gene following perturbation with the 
control shRNAs (Fig. 3A), and for shRNA-specific noise by 
comparing to changes in the expression of the control genes 
following a given shRNA perturbation (Fig. 3B). We 
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estimated the sensitivity of our calls from the 37 regulators, 
which are also included as target reporters (fig. S14, SOM).  

On the basis of these results we identified a densely 
overlapping network with 2322 significant regulatory 
connections, including 1728 activations and 594 repressions 
(Fig. 3B, red and blue, respectively, at 95% confidence tables 
S5 to S7). Of the 125 tested regulators, we confidently 
identified 100 with at least four targets. Among those were 24 
hub regulators that were predicted to regulate over 25% of the 
118 genes measured, and 76 specific regulators each affecting 
the expression of 4 to 25 genes. On average ~14 (±8 stdv) 
regulators activate a target gene, and 5 (±5.8) regulators 
repress it. Indirect effects may account for the large number 
of regulators we observe for each target. 

Our perturbational model captured known regulatory 
features of the response, but also identified novel regulators. 
The reporter genes partition into two main clusters based on 
their response to perturbations (Fig. 3B and fig. S15A): the 
‘anti-viral (polyI:C) like’ program reporters (e.g.CXCL10, 
ISG15, IFIT1), and the ‘inflammatory (PAM) like’ program 
reporters (e.g. IL1b, CXCL2, IL6, IL12b), consistent with the 
expression data. We also found many known regulatory 
relations, for example the NFκB family of transcription 
factors (Rel, Rela, Relb, Nfkb1, Nfkb2 and Nfkbiz) regulating 
their known inflammatory gene targets. Our network 
provided evidence for the involvement of at least 68 
additional regulators in the response to pathogens, of which 
11 were hubs not previously associated with this system. 
Interestingly, 12 regulators identified (e.g. Hhex, Fus, Bat5, 
Pa2g4) are in linkage disequilibrium with SNPs associated 
with autoimmune and related diseases in genome-wide 
association studies (table S8). 

The core inflammatory and anti-viral programs. We 
next addressed how each regulator contributes to the 
generation of specific cell states. We first automatically 
defined the two major states induced by the five pathogen 
components using non-negative matrix factorization (NMF) 
(19) and the original array data (SOM). This procedure 
identified two major expression components (termed 
‘metagenes’): one predominantly determined by genes from 
the ‘inflammatory-like’ program and the other by genes from 
the ‘anti-viral like’ programs (Fig 2A). Next, we quantified 
the effects of each regulator’s knockdown on these two states 
(Fig. 3B, fig. S15A, table S9), by classifying the nCounter 
expression measurements following a regulator’s perturbation 
(19, 20). 

Finally, we used a regulator ranking score (SOM) to assign 
33 (8 known) genes as regulators of the inflammatory state 
and 33 (15 known) genes as regulators of the anti-viral state. 
This accurately classified the known activators of the 
inflammatory response (e.g. the NFκB factors Rela, Nfkbiz, 
Nfkb1, Fig. 3B, yellow in the inflammatory metagene) and of 

the anti-viral response (e.g. Stat1, Stat2, Stat4, Irf8, Irf9 Fig. 
3B, yellow in the viral metagene). Although all perturbation 
experiments were conducted only under LPS stimulation (a 
bacterial component), we correctly classified factors known 
to mediate the response to other stimuli. 34 additional 
regulators were associated with both responses, suggesting 
that a single regulator can control genes in either state 
depending on the differential timing of regulator activation, 
its level, or combinatorial regulation. Notably, for 12 of the 
transcription factors examined, we found an enriched cis-
regulatory element in the appropriate metagene (SOM).  

On the basis of the NMF scores (table S9), we identified 
an inflammatory subnetwork (fig. S15B), an anti-viral 
subnetwork (Fig. 4A and fig. S15C), and several fine-tuning 
subnetworks that affect smaller numbers of genes from both 
responses (Figs. S15D and S16, SOM). The inflammatory 
subnetwork (fig. S15B) consisted of three regulatory modes: 
dominant activators (Cebpb, Bcl3, Cited2) which induce 
more inflammatory targets than anti-viral ones; cross-
inhibitors (Nfkbiz, Nfkb1, Atf4, Pnrc2) which induce 
inflammatory genes while repressing anti-viral ones, and 
specific activators (Runx1, Plagl2), that only target 
inflammatory genes. We observed that dominant activators 
mostly regulate effectors, whereas regulators are primarily 
controlled by cross-inhibitors. 

Focusing on the network architecture, we found multiple 
feed-forward circuits in this response, where an upstream 
regulator controls a target gene both directly and indirectly 
through a secondary regulator (21) (e.g. Fig. 4B, and tables 
S10 and S11). The majority (76%, 4892 of 6444) of these 
feed-forward circuits were found to be coherent (21); having 
the same direct and indirect effect on the regulated gene. The 
vast majority (80%) are type I loops (22) with all-positive 
regulation (e.g. NFKBIZ activates E2F5 and both activate 
IL6). Such feed-forward circuits respond to persistent rather 
than transient stimulation, protecting the system from 
responding to spurious signals, as was shown for one circuit 
in LPS-stimulated macrophages (23). Our finding suggests 
that coherent feed-forward loops, especially class I (21), are a 
general design principle in this system and may 
physiologically impact this response.  

In the anti-viral sub-network, we identified a two-tiered 
regulatory circuit combining feed-forward and feed-back 
loops (Fig. 4A and table S11). This circuit has at the top the 
anti-viral regulators Stat1 and Stat2, which regulate a full 
complement of anti-viral reporters. The second-tier regulators 
Timeless, Rbl1 and Hhex are controlled by Stat1 and 2 and 
most likely form coherent feed-forward loops that target 
specific sub-sets of genes. Timeless, Rbl1 and Hhex also 
feed-back and promote the expression of the Stat regulators. 
This circuit is repressed through the cell cycle regulator and 
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RNA binding protein Fus (24), acting as a single dominant 
inhibitor of 43 viral genes. 

Finally, we derived a core network incorporating the 
regulators with the most substantial impact on each response, 
on the basis of the number, magnitude, and logic of targets 
that each regulator affects (SOM). The core network (Fig. 
4C) has 24 regulators, 13 of which have previously been 
identified as key factors regulating the inflammatory or anti-
viral responses, while 11 have not been previously implicated 
in either response. Of these, 19 are transcription factors, three 
are chromatin modifiers, and two are RNA binding proteins. 
The regulators apparently distinguish the two programs 
through cross-inhibition (Fig. 4C, gray lines) or dominant 
activation (Fig. 4C). The core network also explains how 
differential expression of secreted factors is specified, leading 
to the activation and migration of appropriate cell types for 
different pathogens (25) (fig. S17, SOM).  

Embedded within the many known regulators of the anti-
viral response (Fig. 4C and fig. S15C), we found a large set 
of regulators not previously associated with this response. 
These included several known regulators of the cell cycle and 
the circadian rhythm, including Rbl1, Jun, RB, E2F5, E2F8, 
Nmi, Fus, and Timeless, several of which were placed in our 
core network. This suggests that a cell cycle regulatory circuit 
was co-opted to function in the anti-viral response in DCs 
(with no observable effect on cell cycle progression, fig S18). 
Since we identified these anti-viral regulatory relations in 
perturbation experiments using DCs stimulated with the 
bacterial component LPS, we silenced four regulators 
(TIMELESS, RBL1, JUN and NMI) following exposure to 
the viral component polyI:C. Each of the four regulators 
strongly impacted the anti-viral program, more than was 
observed under LPS stimulation (Fig. 4D), and affected genes 
(e.g. Type I IFNs) whose expression is polyI:C-specific. Nmi 
affected a smaller set of genes, consistent with the model’s 
prediction. These results demonstrate our ability to correctly 
predict function in unobserved conditions.  

Although most anti-viral genes are induced following 
stimulation with the bacterial component LPS, a few critical 
ones are expressed specifically in polyI:C stimulation, or 
follow distinct patterns in each stimulus. In response to viral 
infection cells induce the production of interferon beta1 
(IFNB1), a crucial mediator of the antiviral response. Because 
high levels of IFNB1 may be deleterious to the host if 
infected by specific bacteria (26), we predicted that specific 
mechanisms insulate IFNB1’s regulation from the response to 
LPS. Indeed, although IFNB1 expression was induced in the 
first two hours of stimulation with LPS, this expression 
declined at subsequent time points, in contrast to its sustained 
induction following polyI:C treatment (Fig. 5A). Our model 
suggested that three regulators known to affect chromatin 
remodeling (24, 27, 28) are IFNB1 repressors in LPS (Fig. 

5B): the Polycomb complex subunit Cbx4 (27), Fus (24), and 
the DNA methyltransferase Dnmt3a (28). Cbx4 appeared to 
confer anti-viral specificity to IFNB1 induction as it is 
induced within the first two hours of PAM and LPS treatment 
but not by polyI:C (Fig. 5C), and Cbx4 knockdown caused 
induction of IFNB1 mRNA and protein during LPS treatment 
(Fig. 5D and fig. S19A), but had no effect on the induction of 
the chemokine Cxcl10, a polyI:C and LPS-induced gene (fig. 
S19B). Cbx4 knockdown did not affect IFNB1 during PAM 
activation (Fig. 5E), when the anti-viral response is not 
induced. Combined with evidence for chromatin changes 
around the Ifnb1 locus and its closest neighbor gene, Ptplad2 
(fig. S20A), which has a similar dependence on Cbx4, these 
data are consistent with an effect by Cbx4 on local chromatin 
organization (fig. S20, B and C). Cbx4 knockdown affected 
few genes (~120 up-regulated and ~120 down-regulated 
genome-wide, table S12). Because most up-regulated genes 
show a precise temporal pattern in unperturbed cells akin to 
that of Cbx4– they are induced quickly and return to basal 
level by 2-4 hours (fig. S21 A–F), we conclude that a 
chromatin modifier can act like a transcription factor 
controlling the precise expression of specific genes in the 
regulatory program. 

Taken together, our results suggest a model of a 
transcriptional negative feedback loop, controlling IFNB1 
expression in LPS stimulation, wherein the induced pro-
inflammatory regulator and chromatin modifier Cbx4 
represses transcription by modifying the chromatin in the 
Ifnb1 locus, generating the specificity needed to drive 
inflammatory versus the anti-viral response (Fig. 5F). The 
Type I coherent feedforward loop formed by Cbx4 and 
Dnmt3a (Fig. 4B) is consistent with a delayed repression of 
IFNB1.Since neither regulator carries a sequence-specific 
DNA binding domain, the factors responsible for their 
guidance to the Ifnb1 locus remain unknown.  

Discussion. A central goal of our study was to address the 
mechanistic basis for pathogen-specific responses. Consistent 
with previous studies (13), we distinguished two key 
programs, a PAM (TLR2)-like inflammatory response and a 
polyI:C (TLR3/MDA-5)-like anti-viral response, which are 
together induced by LPS, a gram-negative bacterial 
component and a TLR4-ligand. These programs reflect both 
qualitative and quantitative differences between the required 
functional responses, and are consistent with the cross-
protection between certain bacteria and virus infections (13). 
The broad effect of LPS allowed us to focus on a single 
stimulus and timepoint, but screens with other stimuli may 
identify additional unique regulators.  

We found that these two responses are controlled by two 
corresponding regulatory arms, uncovering a mechanistic 
basis for the observed transcriptional responses. These two 
arms are integrated into a core network of two dozen 
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regulators which balances specific and shared responses 
through dominant activation and cross-inhibition. In the 
inflammatory response, we found several feed-forward loops, 
which may ensure response to only persistent, and not 
sporadic, signals. In the anti-viral response, we discovered a 
two-tiered circuit involving feedback and feed-forward loops, 
implicating a module of cell cycle regulators (Jun, Rbl1, 
Timeless and Nmi), which we directly validated. Over 75 
additional genes work to further fine-tune the regulation of 
gene targets. This perturbational model identifies many 
regulatory relations that would have been missed by non-
systematic approaches.  

While we have benefited from the specific features of the 
DC system, our work establishes an unbiased, straightforward 
and general framework for network reconstruction in 
mammalian cells (SOM). In particular, we develop several 
strategies to leverage shRNA for the study of gene regulation. 
This approach can be executed at substantial scale and 
reasonable cost, and is compatible with the challenge of 
deciphering the multiple regulatory systems that operate in 
mammals. It can be expanded to derive increasingly detailed 
models, and distinguish direct from indirect targets.  

Our study will facilitate the development of new 
computational approaches to infer regulatory models. While 
many computational approaches have attempted to derive 
observational models, their quality has been difficult to 
evaluate (3). The data generated here includes both 
expression profiles for training a model, and a perturbational 
unbiased screen for testing its quality (Web portal; 
ftp://ftp.broadinstitute.org/pub/papers/dc_network/). When 
we compared the perturbational model to our observational 
model, we found that many candidate regulators were 
correctly identified in both fig. S5, S22). However, there were 
also numerous false positive relations in the observational 
model, attributable to the fact that both the correct regulator 
and many others have indistinguishable expression (figs. S22, 
S23).  

The high-resolution map we constructed has important 
biomedical implications. By identifying regulators that 
mediate the differential control of specific gene pairs (e.g. IL-
23 vs. IL-12, fig. S17) and entire regulatory arms (e.g. viral 
vs. inflammatory), it opens the way for therapeutic targeting 
of specific pathways to control disease or enhance vaccine 
efficacy. Furthermore, 12 of our regulators reside in genetic 
loci that were in linkage disequilibrium with SNPs associated 
with autoimmune and related diseases. The identified genes 
and their impact on DCs provide hypotheses to help explain 
how alleles of genes in a cascade may alter susceptibility to 
specific infections or immune disorders in humans. 
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Fig. 1. A systematic strategy for network reconstruction. The 
strategy consists of four steps, from left, (1) state 
measurement using arrays, (2) selection of regulators and 
response signatures, (3) network perturbation with shRNAs 
against each regulator followed by measurement of signature 
genes, and (4) network reconstruction from the perturbational 
data.  

Fig. 2. Gene expression response to pathogen components. 
(A) mRNA profiles of the 1800 genes whose expression was 
induced to at least 1.7-fold from baseline level in both 
duplicates of at least one time point in CD11c+ dendritic cells 
stimulated with the indicated pathogen component across a 
time course of 0, 0.5, 1, 2, 4, 6, 8, 12, 16, 24 hours (tick 
marks; GRD – gardiquimod). Replicates were collapsed and 
genes hierarchically clustered. Rows – genes, columns – 
experiments, red – induced from baseline, blue – repressed 
from baseline, white – unchanged from baseline. (B) Model 
illustrating the differential networks controlling the anti-viral 
(‘polyI:C-like’) and inflammatory (‘PAM-like’) programs. 

Fig. 3. Gene regulatory programs controlling the response to 
pathogen components. (A and B), A strategy to minimize 
false discovery (FDR) calls of significant changes in an 
output target gene resulting from knockdown of a regulator 
gene. (A) The first FDR procedure (top) compares the 
expression of the gene following a perturbation with a 
regulator shRNA (right) to its expression upon perturbation 
with 32 non-targeting shRNAs (left). The dashed lines 
identify the gene-specific FDR-based thresholds for induction 
(blue line) and repression (red line). A discrete vector of 
significant calls (bottom) is derived from the raw data (blue – 
regulator represses the target gene; red – regulator induces the 
target gene). (B) A second FDR procedure (top) compares the 
expression of the target gene to that of eight control (target) 
genes upon perturbation with the same shRNA. In the 
example shown, the gene’s induction (left) was significant 
relative to the variation in expression among the control 
target genes resulting in a high score (bottom, dark blue), but 
its repression did not significantly differ from the controls, 
resulting in a lower score (bottom, weaker red). (C) All 
significant (95% confidence) relations between regulators 
(columns) and targets (rows), colored as in (B). The gray bar 
(right) represents the NMF-based calls for each target gene; 
black – anti-viral program; dark gray – inflammatory 

program; light gray – control genes. The bottom bar shows 
the degree of effect by the regulator on each program as 
determined by the NMF projection of the regulator’s 
perturbation profile. (Yellow – positive effect, Green – 
negative effect; NMF scores are mean-normalized). 

Fig. 4. The core regulatory circuits controlling the 
inflammatory and anti-viral responses. (A) The antiviral sub-
network shows regulatory relations between the core anti-
viral regulators (blue nodes, top), their targets (boxes, 
bottom), each other, and inflammatory regulators (green 
node, top right). The two top regulators, Stat1 and 2, activate 
all anti-viral targets (dashed blue arrows). The second-tier 
regulators activate sub-sets of targets (dashed purple arrows). 
(B) Examples of feed forward loop classes identified in the 
network, with fraction of each class. (C) A core regulatory 
network of the inflammatory and anti-viral programs, 
consisting of the most distinct regulators, and their relation to 
ligands and receptors (top). Pointed arrows – induction; blunt 
arrows – repression; green ovals – inflammatory regulators; 
blue ovals – antiviral regulators. Example target genes are 
noted. (D) nCounter expression profiles for the target genes 
(rows) upon perturbation with shRNAs against a subset of 
viral regulators (columns) and followed by stimulation with 
LPS (left) or polyI:C (right). All values are normalized by 
expression in cells infected with a control shRNA and under 
the same stimulus (shCtl).  

Fig 5. The polycomb component Cbx4 selectively restricts 
IFNB1 production under bacterial perturbations. (A and C) 
LPS (red), polyI:C (blue) and PAM (green)-induced 
expression of ifnb1 (A) and cbx4 (C) derived from data in 
Fig. 2A. (B) IFNB1 expression (by nCounter) in response to 
LPS in DCs perturbed by control shRNAs or shRNAs 
targeting each of 125 regulators (format as in Fig. 3B). (D) 
Ifnb1 mRNA levels (by qRT-PCT) following LPS treatment 
in unsorted mouse bone marrow DCs perturbed with an 
shRNA against Cbx4 (black) or a control shRNA (gray); 
signals are relative to t=0. (E) ifnb1 mRNA levels (by 
nCounter) at 6h post-LPS or PAM in bone marrow DCs 
perturbed with an shRNA against Cbx4 or one of three 
control shRNAs. (F) Model for bacterial-specific repression 
of ifnb1 by Cbx4: both polyI:C and LPS induce ifnb1 
expression early (left), but only LPS induces Cbx4, which 
then represses the ifnb1 locus at a later time (right, top).  

 












