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Abstract. Mathematical models of gene regulatory networks aim to
capture the causal regulatory relationships by fitting the network models
to the monitored time courses of gene expression levels. In this paper,
the NetGenerator algorithm is presented that generates mathematical
models in form of linear or nonlinear differential equation systems. The
problem of finding the most likely interactions between genes is solved by
a combinatorial search strategy and can be efficiently supported by the
incorporation of available expert knowledge. Using favorable parameter
identification methods from a system identification point of view allows
to fit accurate and sparsely connected models. By the inclusion of higher
order submodels, the algorithm enables the identification of gene-gene
interactions with significantly time delayed gene regulation.

1 Introduction

Gene regulatory networks control biological functions by regulating the level
of gene expression. Discovering and understanding of the complex causal rela-
tionships within gene regulatory networks has become a major goal of systems
biology, computational biology and bioinformatics. Today, large-scale measure-
ment technologies are opening novel possibilities for covering information about
the regulatory mechanisms underlying specific biological processes as e.g. re-
actions on different developmental and environmental conditions. One example
of large-scale measurement technologies are DNA microarray experiments that
allow to obtain the output of gene regulatory networks by measuring the gene
expression levels of thousands of genes. Gene expression time courses describe
the temporal changes of expression levels that are caused by the dynamic nature
of regulatory interactions. Analyzing those gene expression time series data by
reverse engineering techniques allows to provide insight into the dynamic pro-
cesses and to generate hypotheses of the causal structure of specific functional
modules of gene regulatory networks.

Using data-driven reverse engineering techniques, structural information is
typically inferred by firstly fitting the parameters of a given mathematical model
to the available time series data and subsequently interpreting the resulting
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model structure. In order to infer biologically meaningful models at least the
following conditions have to be met:

– The mathematical model has to provide an acceptable simplification that
leads to an adequate description of the regulatory processes for a certain
level of abstraction.

– An appropriate identification algorithm must allow to reverse engineer gene
regulatory networks by fitting the model output to the time series observa-
tions.

– The time series data have to cover the main regulatory effects of a considered
gene regulatory network function with respect to both the gene expression
levels and the relevant external input signals.

There exists a huge amount of model architectures and corresponding identi-
fication schemes for the data based reconstruction of gene regulatory networks.
Each modeling approach emphasizes another aspect of the biological mecha-
nisms. Well known mathematical models are e.g. directed graphs, Bayesian net-
works, differential equation systems, stochastic models, Boolean networks and
rule-based models [1]. All theses models can be interpreted as networks of in-
teracting nodes. Each node possesses a corresponding node function (e.g. condi-
tional probability distribution, Boolean function, weighted sum) that processes
the information that comes from other nodes or external inputs. In the model,
the gene-gene interactions are represented by model parameters that determine
the information processing between the nodes. While in principle the models
allow the nodes to interact with each other one, it is known that in regulatory
networks the genes interact with only a small number of other genes. Therefore,
it is the general goal of the identification algorithm to estimate the small subset
of relevant model parameters from the set of possible ones. The relevant param-
eters are those that are required to generate an adequate fit of the model output
to the measured time courses. It is assumed that these relevant model parame-
ters coincide with the gene-gene interactions of the underlying gene regulatory
network.

In general, the results of data-based modeling critically depend on the quality
and the quantity of the given measurement data. The data from microarray
experiments are corrupted by measurement noise with unknown characteristics
and unfavorable signal-to-noise ratios. Furthermore, because of the high costs of
microarray experiments, the number of consecutive time points is still strongly
restricted. On the other hand, there are hundreds or thousands of genes that
are considered simultaneously. Therefore, without the inclusion of additional
mathematical or biological constraints the relevant model parameters can not
be uniquely estimated from the available data [2].

Possibilities to cope with this problem by the inclusion of mathematical con-
straints are first the resampling of time courses based on an interpolation of
time series data [3] and second singular value decomposition based methods [4].
Biological constraints can be taken into account by clustering of co-expressed
genes and the subsequent generation of network models based on clustered time
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courses. Here, co-expressed genes are assumed to be co-regulated by the same
processes [5–7]. Another biologically inspired approach is the application of com-
binatorial search strategies that directly base on the general knowledge of limited
connectivity between genes [8, 9].

In this paper the NetGenerator algorithm is described that infers gene reg-
ulatory networks from gene expression time series data. The method uses a
combinatorial search strategy to identify parsimonious models in form of linear
or nonlinear differential equation systems (Sec. 2.1). Model structure (Sec. 2.2)
and parameter identification (Sec. 2.3) are performed under special considera-
tion of methods from system identification theory in order to reduce undesired
effects from measurement noise. Searching for an appropriate model structure
can be supported by the integration of available expert knowledge (Sec. 2.4).
The identification algorithm allows the generation of models with a vary accu-
rate fitting to the observed time courses while the models remain simple and
interpretable. Section 3 gives an overview of some NetGenerator applications
presented in former publications. The focus of this paper is a detailed descrip-
tion of the NetGenerator algorithm itself.

2 The NetGenerator Algorithm

2.1 Modeling Approach

The NetGenerator modeling approach bases on systems of either linear differen-
tial equations

ẋi(t) =

qs
∑

j=1

wi,jxj(t) +

p
∑

l=1

bi,lul(t), (1)

or nonlinear differential equations

ẋi(t) = aig





qs
∑

j=1,j 6=i

wi,jxj(t) +

p
∑

l=1

bi,lul(t) + ci



 + wi,ixi(t). (2)

Here, the continuous-valued state variable xi describes the expression level
of gene i. The parameters wi,j are the elements of the gene-gene interaction
matrix W that possesses positive entries for inducers, negative entries for re-
pressors and zero entries if there is no influence from gene j to gene i. The input
variable ul represents the lte environmental factor. Then, the parameters bi,l of
the input matrix B determine how the environmental factor ul influences the
expression level xi. The change in expression level xi at each point in time de-
pends on a weighted sum of influential factors. In case of nonlinear differential
equations (2) the nonlinear function g realizes a nonlinear monotonic sigmoidal
activation function. ai and ci are additional parameters of the nonlinear model.

The overall model consists of a set of qs coupled equations of the mathemat-
ical form (1) or (2). Such a system models the regulatory interactions between
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q genes with q ≤ qs. While each gene expression time series is typically simu-
lated by a single equation according to (1) or (2), the NetGenerator algorithm
also allows to model a time series by more than one differential equation. Those
correlated equations increase the dynamic order of the submodel and allow to
identify more complex time courses. The overall model can be subdivided into q

submodels or nodes each consisting of those equations that model a single time
series (Fig. 1).

Given the model architecture and suitable directly measured or preprocessed
time series data for the gene expressions and the external inputs, the NetGener-
ator algorithm constructs sparse interaction and input matrices W and B. The
identification of the relevant non-zero model parameters bases on a combina-
torial search strategy that separates the model structure identification problem
from the model parameter identification problem.
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Fig. 1. Organisation of the NetGenerator model: The q submodels that model the
q gene expression time series can consist of one or more differential equations. In case
of higher order submodels, intermediate states are included.

2.2 Model Structure Identification

The model structure is determined by the connectivity between the network
nodes being equivalent to the information about the non-zero parameters in the
matrices W and B. The NetGenerator structure identification method aims to
detect suitable model structures as well as to allow the simultaneous application
of favorable parameter identification methods from a system identification point
of view.

The NetGenerator algorithm is characterized by the separate identification
of the q submodels. In an outer optimization loop, the overall model is extended
by a newly optimized submodel in each iteration step. The given gene expression
time series are not identified in an arbitrary order, instead the order is optimized
within an inner optimization loop. Thus, in each iteration step of the inner loop,
the identification of all time series (that have not been identified up to this point)
is tested and finally the best one is selected. Within a single iteration step of the
inner optimization loop, the true submodel structure optimization is performed
utilizing a combinatorial search strategy.
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Consequently, the NetGenerator structure identification method consists of
three interlocking parts. First, the outer optimization loop realizes the separate
identification of the time series. Second, the inner optimization loop is responsi-
ble for the optimization of the order of the time series identification. Third, the
combinatorial search strategy performs the optimization of all submodel struc-
tures.

The aim of the optimization of the time series order in the second part is to
obtain suitable conditions for the model parameter identification. The optimiza-
tion of this order causes that simple models that need only few influential factors
to be adequately modeled are selected first. In contrast, more complex time se-
ries that require many influential factors are identified later. Understanding the
advantages of this effect requires the introduction of three different types of
connections within the interaction matrix W (Fig. 2). Forward connections are
positioned in the lower triangular part of the square matrix W . The local feed-
backs form the main diagonal and the backward connections or global feedbacks
are the elements of the upper triangular matrix.
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Fig. 2. Forward connections, local feedbacks, backward connections/global feedbacks
with respect to their positions in the interaction matrix as well as their directions in
the model graph

Now, it is assumed that the submodel for gene i has to be identified and that
the gene is regulated by another gene j. The following both situations can be
distinguished:

– The time series of gene j has not yet been identified. The corresponding
interaction parameter wi,j is an element of the upper triangular matrix. That
means, a backward connection is included. In this situation, the time series of
gene j is only known at the measurement time points. Thus, the simulation
of the submodel that is required for parameter identification (Sec. 2.3) has
to use interpolated measurement data. Two facts are disadvantageous. The
measured expression levels are corrupted by noise and the measured time
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course can significantly differ from the later estimated time course. In this
situation, the parameters estimated and possibly the submodel structure will
not be optimal.

– The time series of gene j has already been identified. The parameter wi,j is
an element of the lower triangular matrix. That parameter corresponds to a
forward connection. For the simulation of the submodel of gene i instead of
the measured expression levels of gene j the simulated expression levels can
be used.

Since the measurement data from microarray experiments include consider-
able noise levels and the model architecture is a rough simplification of biolog-
ical regulatory networks, the use of interpolated measurement data for model
simulation and parameter identification has clear disadvantages. Interpolated
measurement data are required if backward connections are included into the
submodel. Fitting simple time series with few gene-gene interactions first mini-
mizes the number of the critical backward connections during the identification
process. Forward connections allow to take the real modeled time courses and
their associated modeling errors into account. The situations described above
correspond to the prediction error and the output error method known from
system identification theory [10].

Of course, in the final model, forward and backward connections possess
no biological interpretation. The order of the final submodels can be arbitrar-
ily permuted. It should be mentioned that the order of the time series during
identification is only relevant with respect to parameter identification.

Embedded in the outer and inner optimization loop, the NetGenerator algo-
rithm performs the structure identification of the submodels. Starting with an
initial submodel structure the algorithm executes the following steps in an iter-
ative procedure:

1. Modification of the submodel structure by the heuristic search strategy
2. Fitting of the relevant submodel parameters to the data
3. Simulation of the resulting model to obtain the submodel output
4. Determination of the modeling error

The search strategy applied in the first step suggests combinations of influen-
tial genes and external inputs to be examined and compared. All q + p potential
influential factors3 are summarized in the set Z

Z = [x1, . . . , xqs
, u1, . . . , up]. (3)

Testing all possible combinations of influential factors or non-zero parameters
is even for very small networks an impractical task. Therefore, the NetGener-
ator algorithm employs a search strategy that makes reasonable restrictions of
the search space. Possible solutions are directed towards simple, plausible and

3 Note that the qs − q intermediate states that result from submodels with more than
one equation are not allowed to influence other genes.
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interpretable model structures. The search is performed by applying a number
of growing and pruning steps that modify a given e.g. initial submodel structure.
The growing and pruning steps vary the submodel complexity with respect to
the number of gene-gene interactions, the number of influences from external in-
puts and the dynamic order of the submodel. The model selection is controlled
by a number of stopping criterions.

Initial submodel. Each submodel structure optimization starts with a simple
initial submodel that represents a first order lag element. The initial submodel
of gene i possesses two non-zero parameters; the local feedback parameter wi,i

that realizes the self-regulation effect and the parameter bi,1 that assumes an
influence from the first external input on the expression of gene i.

Modification of the submodel complexity. The NetGenerator algorithm selects
subsets of relevant model parameters by searching in two directions: model grow-
ing (forward selection) and model pruning (backward elimination). Forward se-
lection bases on the assumption that the best intermediate solution is part of
the best final solution. Since this assumption does not have to be true, backward
elimination is applied in order to remove unimportant interactions.

1. Model growing (forward selection): A forward selection of the most likely in-
teractions is performed by adding new gene-gene interactions or interactions
from environmental factors. Starting from a given submodel structure with
n non-zero parameters, all possible solutions with n+1 non-zero parameters
are examined. The best solution with respect to the model fit is retained and
further expanded in the next iteration until a stopping criterion is met.
Selecting gene-gene interactions, forward connections are preferred, while
backward connections are only included if other connectivities could not
provide acceptable solutions.

2. Model pruning (backward elimination): Backward elimination removes gene-
gene interactions and external inputs from the submodel structure. In order
to decrease the model complexity, all possible solutions that result from the
removal of one interaction are considered. Again, the best solution is retained
and tested for possible further removals until a stopping criterion is met. If
interactions are removed, the algorithm guarantees that the decreased model
structures remain biologically plausible. For example, structures with only
one local feedback parameter are meaningless and are generally excluded.

3. Inclusion or removal of additional time lag elements: The third possibility
to obtain improved model fits is to adapt the type of dynamic dependency
between the interacting genes. The general model structure involves first or-
der dynamics for all submodels. In order to overcome this limitation, the
NetGenerator algorithm allows to include submodels that consist of R dif-
ferential equations and that represent lag elements of order R. The search
strategy tests different dynamic orders up to a predefined maximum dynamic
order and selects the best fitting one. Although, the dynamic behavior of the
included higher order submodels changes significantly, their allowed param-
eterization is strongly restricted to transfer functions with R equal poles and
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no or only one zero. Higher order submodels are well suited to identify reg-
ulatory interactions that are characterized by significant time delays. They
preserve the connectivity of the network model. It should be mentioned that
oscillating submodels are excluded since the associated submodel complexity
would allow them to adapt to highly complex time courses solely based on
submodel dynamics instead of submodel connectivity.

Stopping criterion. In order to avoid overfitting and to reach some predefined
model characteristics, the inclusion or the removal of interactions is tied to a
number of conditions e.g. an increase in submodel complexity must lead to a
considerably improved model fit, a decreased submodel complexity only leads to
a marginally worsened model fit, the number of relevant submodel parameters
is smaller than the number of data points in the corresponding time series and
the number of submodel interactions does not exceed a predefined limit.

2.3 Model Parameter Identification

Model parameter identification for a given submodel structure is a repeatedly ex-
ecuted operation. In this approach, the parameter identification is performed by
a constrained nonlinear optimization procedure that minimizes the mean square
error between the model fit and the expression data. The self-regulation param-
eters wi,i are constrained by the condition wi,i < 0, i.e. the generated submodels
are locally stable. It should be mentioned that even for linear differential equa-
tion systems the nonlinear optimization is preferred. A linear regression method
requires the information about the time derivatives. However, estimating the
time derivatives from sparsely sampled and noisy time courses is extremely un-
reliable. That problem agrees with the unfavorable optimization of submodels
including backward connections. Nevertheless, the time derivatives are used for
parameter initialization, since linear least squares regression is applied to ob-
tain the initial parameters for the nonlinear optimization. Here, time derivatives
are calculated based on a Hermite interpolation. These time derivatives are ex-
clusively used in order to find initial parameter values. The parameters of the
nonlinear differential equation system according to (2) are initialized in the same
way. Their additional parameters are initialized in such a manner that they pro-
vide a linear output for a wide operating range. The initial conditions x(0) are
not optimized, they are derived directly from the measured time courses.

2.4 Integration of Expert Knowledge

Because of the high complexity of gene regulatory networks as well as the serious
limitations of the measurement data, it is very advantageous to incorporate as
much biological knowledge as possible into the network model. The combina-
torial search strategy bases on the general knowledge that each gene interacts
with only a limited number of other genes. However, the structure identification
method also allows to introduce specific expert knowledge about the existence or
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the absence of gene-gene interactions or input signaling pathways. Figure 3 illus-
trates such information and shows the corresponding model graph. The structure
identification algorithm ensures the consistency of all examined submodel struc-
tures with the previously known relationships. The possibility to constrain the
given model structure can also be utilized to test different hypotheses extracted
by former network reconstruction and to assess their effects on the remaining
model structure.
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model graph; (- no prior knowledge, 1 interaction exists, 0 interaction exists not)

3 Applications

The NetGenerator algorithm has been applied to generate hypotheses about
gene regulatory interactions within different biological networks from gene ex-
pression time series data. For all applications, an exhaustive clustering analysis
was performed. The main kinetics were extracted by primarily fuzzy clustering
of differentially expressed genes. Clustering analyses included the optimization
of the number of clusters by evaluating cluster validity indices and the utilization
of process-specific knowledge from databases. Network reconstruction was per-
formed by detecting the regulatory interactions between cluster-representative
genes. The selection of these representative genes was based on their fuzzy mem-
bership degree to clusters, on biological expert knowledge or also on methods as
e.g. gene description text mining. As a result of clustering, the NetGenerator al-
gorithm had to discover the causal relationships between 4 and 10 main kinetics
characterizing the biological processes. The available time series contained be-
tween 5 and 9 measurement points. For several applications, alternative network
models were generated and investigated based on different initializations of the
algorithm or the integration of different expected prior knowledge. For some ap-
plications, the robustness of network reconstruction was analyzed by performing
a huge number of identification runs with artificially perturbed data simulating
the effects of measurement noise. The resulting models included between 8 and
22 interaction parameters that were compared with knowledge not included into
the network reconstruction. The following applications have been published:
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– Immune response of peripheral blood mononuclear cells to bacterial infection
with heat-killed pathogenic E. coli [2]; (Fig. 4)

– Stress response during recombinant protein expression in E. coli [11]
– Effect of LiCl stimulation on hepatocytes [12]
– Stress response to a temperature shift in A. fumigatus [13]
– Effect of culture media on primary mouse hepatocytes [14]

In [15], the application of the NetGenerator algorithm for network model
based analysis of a bioartificial liver cell system is reported. In contrast to the
applications listed above, relationships between the kinetics of biochemical vari-
ables and amino acids were analyzed.
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4 Discussion

The NetGenerator algorithm presented in this paper has been devised to iden-
tify gene regulatory network models in form of linear or nonlinear differential
equation systems using gene expression time series data. The advantages of dif-
ferential equation systems are their capability to present dynamic system be-
havior explicitly and to model dynamics at continuous-valued expression levels,
rather than just the two levels on and off. There are a number of identification
methods available for inferring those dynamic systems. Well known examples are
least squares methods [3], singular value decomposition based methods [4], ge-
netic algorithms [7], simulated annealing [5] and combinatorial search strategies
[16, 8]. Most of these approaches incorporate linear regression methods. They
suffer from the drawback of requiring the time derivatives that have to be cal-
culated from sparsely sampled and noisy measurement data. The NetGenerator
algorithm proposed uses nonlinear optimization to estimate the parameters of
a given submodel structure. Beside the accurate fitting that can be obtained
due to the favorable system theoretic conditions, it also allows the optimization
of higher order submodels. Those submodels enable the identification of signif-
icantly time delayed gene regulation. This capability is very important, since it
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is known that there can be a considerable time delay between the expression of
one gene and the observation of its effects [17]. With the inclusion of interme-
diate states, the possibility is given to consider a broader class of biologically
meaningful dynamic dependencies.

Due to the limitations of available data, it is extremely important to find
an adequate subset of genes, gene clusters or cluster-representative genes for
network reconstruction. This selection has to include as much expert knowledge
as possible. The applications presented in Sec. 3 perform clustering in order to
preprocess the given time courses. If the quality and the quantity of data is
seriously limited and if no further knowledge is available, for two very similar
time courses, it makes no sense to derive different connectivities for the corre-
sponding genes. Even though that gene-specific information can be lost and that
co-expressed genes do not have to be regulated by the same biological function,
similar expression patterns should be clustered. Advantages of clustering are the
inherent reduction of dimensionality and noise.

The state variables of the differential equation systems are not restricted to
model levels of gene expressions. In general, they can correspond to measured or
preprocessed data of any type (e.g. proteins, metabolites). Also, the input vari-
ables are not restricted to directly measured environmental factors. These can be
combinations or nonlinear transformations of those measured factors combined
or transformed based on given knowledge. If no measurements for external factors
are available, their qualitative behavior valid under the experimental conditions
has to be assessed and a temporal behavior has to be assumed (e.g. Heaviside
step function for sudden and ongoing changes of environmental conditions).

In reverse engineering, in general, a small modeling error gives no guarantee
that the model obtained will show structural equivalence to the gene regula-
tory network analyzed. Differential equation systems are rough representations
of biological mechanisms, since the complex regulatory effects of intermediate
products are simplified to linear or specific nonlinear relationships between genes
[18]. Otherwise, data delivered by DNA microarray experiments mostly do not
contain enough information to reconstruct more complex models. Therefore, as
long as data availability is not improved, the models that result will not be
adequate to make correct predictions for the gene regulatory response under
changed experimental conditions.

For these reasons, the NetGenerator algorithm allows to express hypothe-
ses on the most likely activating or repressing interactions of the underlying
network. Providing further support for these hypotheses, additional specifically
designed experiments are necessary. Integrating diverse biological knowledge can
dramatically improve the results of network reconstruction. A limitation of the
presented algorithm is its relatively long calculation time for larger networks
(e.g. more than 15 genes). This effect is caused by the exhaustive search strategy
that includes a huge number of nonlinear parameter optimizations. However, the
NetGenerator algorithm allows to reconstruct very sparsely connected network
models with a high accuracy of model fitting.
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